タンパク質
[Wikipedia|▼Menu]
タンパク質の中には複数(場合によっては複数種)のポリペプチド鎖が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を四次構造と呼ぶ[11]。各ポリペプチド鎖はモノマーまたはサブユニットと呼ばれ、複合体はオリゴマーと言う[11]。各サブユニットには疎水結合や水素結合またはイオン結合が広い領域に多数存在し相補的に働くために方向性があるため、サブユニットは全体で特定の空間配置(コンホメーション)を取る[11]。例えば、ヒトの赤血球に含まれ酸素を運ぶヘモグロビンは、α・β2種類のグロビンというサブユニットがそれぞれ2つずつ結びつく四次構造を持ったタンパク質の一種である[7]
一次構造と高次構造の関係

タンパク質の立体構造は、そのアミノ酸配列(一次構造)により決定されていると考えられている(Anfinsenのドグマ)。また、二次以上の高次構造は、いずれも一次構造で決定されるアミノ酸配列を反映している。例えば GluAlaLeu が連続するとαヘリックス構造をとりやすい。IleValMetはβシート構造をとりやすい。また各構造の継ぎ目の鋭角なターンの部分には GlyProAsn が置かれる、などの例がある。さらに、疎水性アミノ酸残基同士は引き合い(疎水結合)、Cys 同士はジスルフィド結合を形成して高次構造を安定化させる。
プロテオーム

生体のタンパク質を構成するアミノ酸は20種類あるが[1]、それが3つ連結したペプチドだけでも約203=8000通りの組み合わせがあり得る。タンパク質については、その種類は数千万種と言われる。生物の遺伝子(ゲノム)から作られるタンパク質ひとそろいのセットは、プロテオームと呼ばれるが、ヒトゲノムの塩基配列解読が終わった今、プロテオームの解析(プロテオミクス)が盛んに進められている。
タンパク質の構造と機能

タンパク質の機能は上記の三次構造・四次構造(立体構造)によって決定される。これは、同じアミノ酸の配列からなるタンパク質でも、立体構造(畳まれ方)によって機能が変わるということである。たとえばBSEの原因となるプリオンは、正常なプリオンとは立体構造が違うだけである。なお、多くのタンパク質では、圧力を加えたり、溶液の pH 値を変える、変性剤を加えるなどの操作により二次以上の高次構造が変化し、その機能(活性)を失う。これをタンパク質の変性という。変性したタンパク質においては、疎水結合水素結合イオン結合の多くが破壊され、全体にランダムな構造が増加したペプチド鎖の緩んだ状態になることが知られている。タンパク質の変性は、かつて不可逆な過程であると考えられてきたが、現在では多くのタンパク質において、変性は可逆的な過程である事が確認されている。なお、変性したタンパク質を元の高次構造に戻す操作をタンパク質の再生という。タンパク質の再生は、原理としては、畳み込まれたペプチド鎖を一旦完全にほどき、数時間かけてゆっくりと畳み込むよう条件を細かく調整・変化させることで行われている。
タンパク質の折り畳み

特定のアミノ酸配列に対して、存在しうる安定な高次構造が複数存在するにもかかわらず、生体内では特定の遺伝子から特定の機能を持つ高次構造をとったタンパク質が合成できるかは、必ずしも明らかではない。クリスチャン・アンフィンセンの実験などで判明した多くのタンパク質が変性した後にもその高次構造の再生が可能なことから、一次構造それ自体が、高次構造のかなりの部分を決めていることは疑いがなく、これは「アンフィンセンのドグマ」と呼ばれる[9]。しかし、先のタンパク質の再生は数時間かかる操作(実際には、二次構造の畳み込みはかなり迅速に起こっていて、三次構造の確定に時間がかかるらしい)であるのに対し、生体内でのタンパク質の合成は数十秒から一分で完了する。さらに、発見された「アンフィンセンのドグマ」に反する事例からも、タンパク質分子を高速に畳み込み、正しい高次構造へと導く因子の存在が考えられている[9](例:タンパク質ジスルフィドイソメラーゼ、プロリンシストランスイソメラーゼ、分子シャペロン)。また、生体内では間違った立体構造をしているタンパク質はそのタンパク質のLysのアミノ基にポリユビキチン共有結合で結合した後に、プロテアソームによって分解される。

タンパク質は周囲の環境の変化によりその高次構造を変化させ、その機能を変えることができる。タンパク質である酵素は、その触媒する反応の速度を条件に応じて変化させることができる。
立体構造の決定

上記のようなタンパク質の高次構造は、X線結晶構造解析NMR(核磁気共鳴)、電子顕微鏡などによって測定されている。また、タンパク質構造予測による理論的推定なども行われている。タンパク質の立体構造と機能は密接な関係を持つことから、それぞれのタンパク質の立体構造の解明は、その機能を解明するために重要である。いずれ、ほしい機能にあわせてタンパク質の立体構造を設計し、合成できるようになるだろうと考えられている。

これまでの研究により構造が解明されたタンパク質については、蛋白質構造データバンク[12]によりデータの管理が行われており、研究者のみならず一般の人でもそのデータを自由に利用、閲覧できる。
物性
熱力学的安定性

タンパク質は、それぞれのアミノ酸配列に固有の立体構造を自発的に形成する。このことから、タンパク質の天然状態は熱力学的な最安定状態(最も自由エネルギーが低い状態)であると考えられている(アンフィンセンのドグマ)。

タンパク質の立体構造安定性は天然状態と変性状態の自由エネルギーの差 Δ G d {\displaystyle \Delta G_{\rm {d}}} (変性自由エネルギー)で決まる。なお、温度依存性を議論する場合には、安定性の指標として e x p ( − Δ G d / k T ) {\displaystyle exp(-\Delta G_{\rm {d}}/kT)} が用いられることもある。通常、タンパク質の安定性は、温度、圧力、溶媒条件等に依存する。従って、それらの条件をある程度変化させると、タンパク質は変性する。

タンパク質の安定性を決める要因として、ファン・デル・ワールス相互作用疎水性相互作用水素結合イオン結合、鎖エントロピー、ジスルフィド結合などがある。これらの寄与の大きさは、温度等により変わる。

多くのタンパク質は、室温近傍で数十 kJ/mol 程度の Δ G d {\displaystyle \Delta G_{\rm {d}}} をとる。この非常に小さな Δ G d {\displaystyle \Delta G_{\rm {d}}} は変性状態に対して天然状態が絶妙なバランスで安定であることを示しており、この性質は限界安定性 (marginal stability) と呼ばれている。

温度が変化すると、変性エンタルピー Δ H d {\displaystyle \Delta H_{\rm {d}}} や変性エントロピー Δ S d {\displaystyle \Delta S_{\rm {d}}} は急激に変化するが、それらの変化の大部分は相殺して Δ G d {\displaystyle \Delta G_{\rm {d}}} に寄与しない(エンタルピーエントロピー相殺)。変性熱容量変化 Δ C p , d {\displaystyle \Delta C_{p,{\rm {d}}}} は正の値を持ち、タンパク質内部のアミノ酸残基(疎水性アミノ酸が多い)の水和に伴う水和水の熱容量変化によるものであると考えられている。
モルテン・グロビュール状態

タンパク質はその変性の途中で、二次構造はあまり変化しないのに三次構造が壊れた状態を取ることがある。これをモルテン・グロビュール状態 (molten globule state) とよぶ[注釈 1]。この状態は高塩濃度下かつ低pHの条件で安定に存在することがあり、タンパク質の折り畳みの初期過程を反映したものであると考えられている。
熱変性・低温変性

タンパク質は高温になると変性する。これは熱変性と呼ばれる。加熱するとタンパク質の一次構造が変化することはほとんど無いが、二次以上の高次構造は崩れやすい。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:97 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef