スーパーチャージャー
[Wikipedia|▼Menu]
□記事を途中から表示しています
[最初から表示]

スーパーチャージャー (: supercharger) は本来、過給機全般を指すが、機械式過給機を指して「スーパーチャージャー」と呼び、排気タービン式過給機(ターボチャージャー)とは区別されるのが通例となっている[1]。機械式過給器を特に区別する場合はメカニカル・スーパーチャージャーと言われる。
概要

スーパーチャージャーは、エンジンの出力軸(クランクシャフト)からベルトなどを介して取り出した動力や電動モーターによって圧縮機(コンプレッサー)を駆動し、空気を圧縮してエンジンに供給する補機であり、圧縮機の種類により遠心式、ルーツ式、リショルム式などがある。ターボチャージャーと同様にオイルで潤滑されているが、スーパーチャージャーの場合、エンジンオイルではなく専用のスーパーチャージャーオイルで潤滑されており、エンジンオイルのメンテナンスが寿命に影響することはない。
遠心式
詳細は「遠心式圧縮機」を参照回転する羽根車(インペラ)によって吸入した空気を圧縮する方式である。空気に速度エネルギーを与えるインペラと外方の断面積を大きくして空気に速度エネルギーを圧力エネルギーにかえるデフューザ、デフューザから出た空気を溜めて圧力を均一化する集合管で構成されている[2]。主に航空機用のレシプロエンジンに使用された方式で、自動車用としても使用されることがある。
ルーツ(: Roots)式
繭型や三つ葉型など、凹凸のある断面形状を持つ一対のローターが互いに接触しないようにかみ合った状態で回転してハウジングとローターの凹部に取り込んだ空気を送り出す方式である[3]。ローターの断面形状にはサイクロイド型、エンベロープ型ならびにインボリュート型があり、羽の数は2枚(2葉)から4枚(4葉)、のものが使われている[3]。ルーツブロア(: Roots-type blower)とも呼ばれ[3]1866年にルーツ兄弟が溶鉱炉の送風機として特許を取得した[4]。@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}その後、1900年ゴットリープ・ダイムラーが特許を取ったエンジンの過給機として使われた[要出典]。内部圧縮はなく高圧過給には向いていない[要出典]。ねじれのない2葉式が古くから利用されているが、加工技術の発展に伴って、ねじれた3葉式や4葉式のも用いられるようになった。これはルーツ式は構造として吐出が間欠的に行われる事となるため脈動が大きく、それによる騒音や振動が生じる為である。基本となる捻れのない2葉式は吐出の間隔が長く、吐出も一気に行われる為これが顕著となる。そこで多葉化する事により吐出の間隔を短縮、さらに捻りを設けることで吐出を緩やかにし脈動を低減している。
リショルム(: Lysholm)式
詳細は「リショルム・コンプレッサ」を参照らせん状の溝を持つ2つのローターを組合せ、一端からローターの間に空気を取り込み、軸方向に送りながら圧縮して他端へ送り出す方式である[3]。内部圧縮があり高圧過給でも効率が落ちない[5]。レシプロ式と比較して振動が少なく、効率が高いことから潜水艦など、一部の静粛性を求められる艦船で使用される。
スクロール(: scroll)式
渦巻形の羽(スクロール)を2つ組合せ、一方を固定してもう一方を回転させずに円運動させることで、渦巻の外縁から空気を取り込み、圧縮させながら中心へと送って吐出する方式である。ドイツの自動車メーカー・フォルクスワーゲンが「Gラーダ」の商標で、ポロ G40、コラード G60、パサート G60に採用していた。
スライディングベーン(: sliding vane)式
放射状にスリットが設けられた円柱状のローターを楕円形のハウジングの中央に配置したり、あるいは円形のハウジングに偏心させて配置し、スリットには複数のベーン(羽根)が法線方向にスライド可能に組み込まれた構造で、ベーンとベーンの間の空間が大きい位相で空気を取り込み、ベーンの回転に伴って空間が小さくなって空気を圧縮して吐出する方式である。1930年代MGカーズがパワープラス・スーパーチャージャーの名称で採用し。航空機ではユンカース ユモ 205エンジンに代表される対向ピストン式(en)2ストロークディーゼルエンジンの掃気デバイスとしてこの方式が採用された。オートバイでは1930年代末にDKWロードレース世界選手権参戦用のスプリット・シングル2ストロークエンジンを搭載したロードレーサーの掃気デバイスとして、レシプロ式とベーン式を組み合わせて採用した[6][出典無効]。
レシプロ式
シリンダー内を往復するピストンで圧縮を行う方式である。1910年代に考案され、ユニフロー掃気式の2ストロークガソリンエンジンの掃気用として採用例がある。

二葉ルーツ式の構造

三葉ルーツ式の吐出部

リショルムスクリューローター

スクロール式

ベーン式

レシプロ式

排気の流れを動力源として利用するターボチャージャーと比較すると、排ガス浄化性能が高く、スロットル(アクセル)操作に対する反応や中低速での出力特性が優れている[7]。一方、機械式スーパーチャージャーのうちエンジンの出力軸から動力を得ている場合、消費される出力はスーパーチャージャーの回転速度の2乗に比例するため[2]高回転域の出力がターボチャージャーに比べ劣る。機械式スーパーチャージャーの欠点を補うため、動力源を電動モーターとしたスーパーチャージャーが小排気量の自動車向けとして開発され、量産化され始めている[8][9]。しかしながら、定常運転の時間が長い航空機用や産業用のエンジンではターボチャージャーのほうが主流となっていて、スーパーチャージャーは一部の自動車用ガソリンエンジンに採用されているのみである。
航空機での利用

航空機の技術が発展して大気密度の低い高高度を飛行するようになると、大気密度の低下によるレシプロエンジンの出力低下を補うために過給機が開発され、機械式のスーパーチャージャーが採用されるようになった。戦間期には飛行高度の上昇により、より密度の低下した吸気をさらに過給するため、過給機を二段とし一段目で過給した吸気を二段目でさらに過給する、二段式過給機が採用されるようになった。アメリカでターボチャージャーが実用化されると二段式の一段目にターボチャージャーを採用する機種が登場した。ジェットエンジンが実用化されるとレシプロエンジンを搭載する航空機は小型機に限られるようになり、過給機が搭載される場合もターボチャージャーが搭載されている。航空機のスーパーチャージャーでは遠心式が多く採用された。

航空機の場合は飛行高度による大気の密度変化が大きいため、同じエンジンであっても主用する高度により過給機の調整がなされる場合もある(低高度で活動する地上攻撃機向けは、翼車を小径に、高空用は翼車を大径にするなど)が、多くの場合、高度によって過給機の回転数を変える変速式が用いられる(増速比が二種類設定できるものは二速式と呼ばれる)。航空機に過給機を用いて地上1気圧下と同等の出力が得られる高度は臨界高度と呼ばれるが、臨界高度を高くするためには過給機の回転速度を速くするなどの方法で過給圧を高くする必要がある。しかし一方で、過給圧を高くすると機械損失(メカニカルロス)が大きくなり、低高度での出力に制限がかかる。このため航空機に採用されていたスーパーチャージャーは、高度によって回転速度を切り替えることができる機械式変速機や、流体継手を用いた流体継手を備えるようになった。

軍用機の場合、二速過給機とした場合でも、十分な出力が発揮できるのは通常6,000m程度とされ、例えばFw190やホーカータイフーン等の一段過給のエンジンの航空機は、これ以上の高度では急激に出力が低下するのが泣き所とされていた。高空での出力を維持するためには、複数のスーパーチャージャーを組み込み、一段目で圧縮された空気をさらに二段目で圧縮する二段過給と呼ばれる方式が必要になる。ターボチャージャー(排気タービン)を搭載した航空機でもこれは同様で、1段目過給をターボチャージャー、二段目過給をエンジンに装備されている機械式スーパーチャージャーで行う二段過給を行う例が多い。

闇雲に加給圧を上げても、圧縮によって高温になった空気により異常燃焼を起こすため、吸入気を冷やすために、水メタノール噴射装置を追加したり、一段目と二段目の間に中間冷却器(インタークーラー)を組み込むことも行われた。
自動車での利用

スーパーチャージャーは小排気量の4気筒エンジン特有の細い低速トルクを補う目的で一時期各メーカーが採用車種をラインナップしていた。コストを抑えやすいためルーツ式が主流である。イートン・コーポレーションでは四葉のものも開発・製造しており量産車への採用例もある。また、ルーツ式スーパーチャージャーとターボチャージャーを組み合せ、低回転域ではスーパーチャージャーが働き、高回転域ではターボチャージャーが働くツインチャージャーを採用する例もあった[10]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:111 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef