コーシーの凝集判定法
[Wikipedia|▼Menu]
.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









数学において、コーシーの凝集判定法(コーシーのぎょうしゅうはんていほう、: Cauchy condensation test)は標準的な級数の収束判定法の一つである。名称はオーギュスタン=ルイ・コーシーにちなむ。

各項が非負実数から成る非増加無限数列 f ( n ) {\displaystyle f(n)} に対して、級数 ∑ n = 1 ∞ f ( n ) {\displaystyle \displaystyle \sum \limits _{n=1}^{\infty }f(n)} が収束するための必要十分条件は「凝集」した級数 ∑ n = 0 ∞ 2 n f ( 2 n ) {\displaystyle \displaystyle \sum \limits _{n=0}^{\infty }2^{n}f(2^{n})} が収束することである。さらにこれらの級数が収束するならば、「凝集」した級数の収束値は元の級数の収束値の2倍を上回らない。
級数の評価

コーシーの凝集判定法は、次のより強い評価式から従う。 ∑ n = 1 ∞ f ( n ) ≤ ∑ n = 0 ∞ 2 n f ( 2 n ) ≤   2 ∑ n = 1 ∞ f ( n ) {\displaystyle \sum _{n=1}^{\infty }f(n)\leq \sum _{n=0}^{\infty }2^{n}f(2^{n})\leq \ 2\sum _{n=1}^{\infty }f(n)}

(不等式は拡大実数におけるものと考える必要がある。)この証明の中核部分は、ニコル・オレームによる調和級数の発散性の証明に倣っている。

最初の不等式を示すため、元の級数を2の冪乗個ずつの項にくくり直す。くくられたそれぞれの和は、数列の非増加性より、最大値をとる最初の項の値で置き換えた和で上から抑えられる。 ∑ n = 1 ∞ f ( n ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) + f ( 5 ) + f ( 6 ) + f ( 7 ) + ⋯ = f ( 1 ) + ( f ( 2 ) + f ( 3 ) ) + ( f ( 4 ) + f ( 5 ) + f ( 6 ) + f ( 7 ) ) + ⋯ ≤ f ( 1 ) + ( f ( 2 ) + f ( 2 ) ) + ( f ( 4 ) + f ( 4 ) + f ( 4 ) + f ( 4 ) ) + ⋯ = f ( 1 ) + 2 f ( 2 ) + 4 f ( 4 ) + ⋯ = ∑ n = 0 ∞ 2 n f ( 2 n ) {\displaystyle {\begin{array}{rcccccccl}\displaystyle \sum \limits _{n=1}^{\infty }f(n)&=&f(1)&+&f(2)+f(3)&+&f(4)+f(5)+f(6)+f(7)&+&\cdots \\&=&f(1)&+&{\Big (}f(2)+f(3){\Big )}&+&{\Big (}f(4)+f(5)+f(6)+f(7){\Big )}&+&\cdots \\&\leq &f(1)&+&{\Big (}f(2)+f(2){\Big )}&+&{\Big (}f(4)+f(4)+f(4)+f(4){\Big )}&+&\cdots \\&=&f(1)&+&2f(2)&+&4f(4)&+&\cdots \\&=&\sum \limits _{n=0}^{\infty }2^{n}f(2^{n})\end{array}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef