イブン・ハイサム
[Wikipedia|▼Menu]
また、実験を効果的に多用した。屈折光学に関しては、近代以前では、数少ない包括的で信頼できる典拠の一つであった。
古代の光と視覚の研究

古代ギリシア古代ローマにおいて、光学(optica, 視学)は、ユークリッドプトレマイオスらによって高度な幾何学的な理論となっていたが、主たる目的は視覚の説明であった。反射鏡で太陽光を一点に集める研究(焦鏡、ディオクレス(英語版)、トラレスのアンテミオス)もあったが、それらは別の学問とされた。虹、暈などの大気光学現象は、気象学で扱われ、数学的な学問の専門家による研究は残っていない。

また、視覚の原因に於いては、光は主要な原因とはされなかった。まず、ユークリッドプトレマイオスらの光学家は、眼から放出される「視線」が対象に到達して成立するとした(外送理論(英語版))。ついで医学者ガレノスは、視覚論に眼や神経、脳の解剖学と生理学を始めて本格的に取り入れたが、彼の視覚論もまた、ある種の外送理論だった[注 3]。このほか、プラトンやストア派の哲学者たちを含め、外送理論が圧倒的な多数派であった。

一方、アリストテレスは「色」が空気などの媒体を介して感覚器眼に流入することで成立するとし[注 4]、視線の理論を批判した。例えば「星にまで瞬時に届く視線を考えねばならないのは不自然」といった議論は、素朴ながら分かりやすい[20]。また、古代において、初めてまとまった感覚の理論を展開し、プトレマイオスやガレノスにも影響を与えた。だが、視覚論についてはあまり賛同者はいなかった。なお、アリストテレスにおいては、「光」とは発光体の作用によって空気などの媒質が活性化された状況のことを指す[注 5]
視覚と光の関係

イブン・ハイサムは古代の幾何学的な視覚論、とりわけプトレマイオス『光学』を大いに利用しているが、「視線」の物理的な不自然さについては、アリストテレスの見解に同意した。しかしアリストテレスの視覚論にも与せず、光が物体の「色」を眼に届けるという、新たな理論を打ち出した[注 6]。古代の主要な視覚論では、光は補助的な役割しか与えられなかったが、これによって光が視学で主要な場所を占めることになった。また、彼は、光線が視線と概ね同じ経路を逆向きに進むと結論し、古代の幾何学的な視覚論の成果を取り込むことができた。

また、光は視線と異なって煙や埃で経路を浮かび上がらせることができ、その性質を実験で多角的に調べることができた。例えば、外送理論への反論で、複数の視線が空気中で交錯した場合の効果を問題視する議論があった。光についても、似たような問題が考えられる。そこでイブン・ハイサムは、ロウソクから発せられる光を壁に開けた小さな穴で交じらわせたのちスクリーンに投影し、ロウソクが二本でも像は乱れないことを示した。そして、光が光源から四方に均等に放出されて直進するとして実験結果を説明した。これはカメラ・オブスクラの特殊な場合である。

視覚を光で説明した結果、古代の視覚論では問題にされなかった、眼における像の形成の問題が浮上した。光は独自の法則に従って直進するだけであるので、眼に入って適切な像を結ぶかどうかは全く自明ではない。

イブン・ハイサムは当時のガレノス流の解剖学を参考にしてこの問題に取り組んだ。しかし、当時の眼の構造論は、この目的には全く不十分であった[注 7]。彼の理論では、水晶体に光を屈折させるほかに水晶体の表面に垂直な光線のみを選ぶ役割を果たさせた。また、水晶体から網膜までのプロセスは、純粋に光学的な現象とはされなかった。正立像に準拠したことを含め、古代の視覚論の基本的な構造を保つ結果となった。

しかし、問題設定や分析の手法、特に点状解析はヨハネス・ケプラー以降の視覚論でも継承される[22]。また、眼に入射した光が屈折を経てから感知されることを証明するなど、鋭い見識を発揮しているところもある。証明の一環として、古代の視線の理論では説明できない現象を巧みな実験で示しており、彼はこの発見を視線の理論に対する、自らの理論の優位の根拠とした[21]
実験的手法

イブン・ハイサムとそれ以前の光学研究の相違点の一つには、実験の効果的な多用がある。『光学の書』に記述される実験の数はプトレマイオスのそれよりも圧倒的に数が多く、ほぼ全ての重要な論点について一々実験的な証明を付けている。実験は、光の性質に関する、自然学的な議論を避けるための手段として多用された形跡がある。それゆえに論証のためのレトリックに過ぎず、実際には実験を実行していないのではないか、という疑念はある。例えば、後に述べる屈折の実験は、様々な困難が指摘されており、どこまで実際に実行したか疑問を持たれている。だが、提示されている実験の結果は、全て健全な結果を示しており、全てが思考実験であったとは考えられない。また、彼の実験的手法と近代的な実験科学の関係については様々な議論がある[注 8]
点状解析

彼の理論的な分析で鍵になったのは点状解析(point analysis) で、これは発光体やそれに照らされた物体の表面の各点から全方向に一様に光が放出され、眼の受光部の各点で感知されるとする。また、明るさは光線の密度に比例するとするとする[注 9]

この理論の一つの著しい成果はカメラ・オブスクラ(ピンホールカメラ)ある[注 10]。古代から、穴の形が映される像にほとんど影響しないことが難問としてして指摘されていたが[注 11]、それに明快な答えを出したのがイブン・ハイサムの『日食の形について』という論考である[注 12]。本書が伝わらなかった欧州では、この問題の扱いについて当初は迷走し[注 13]、イブン・ハイサムの水準に到達したのは、16?17世期のケプラーやマウリョリコであった[注 14]
反射と屈折

古代の幾何学的な視覚の理論の重要な話題に、反射や屈折による像の反転や変形の問題があった。これらの問題において、イブン・ハイサムは幾何学者としての手腕を余すことなく発揮している。

まず反射光学(catoptrics)では、球面鏡での反射に関する「アルハーゼンの問題」[注 15](en:Alhazen's problem、アルハゼンの定理)の円錐曲線を用いた解の構成方法を与え[注 16]、この解を用いて球面鏡、円筒鏡および円錐鏡による像を解析した。なお、イブン・ハイサム自身は代数学と幾何的に未知な量を求める問題を別の分野の学問と考えており、この問題は純粋に幾何学的に扱っている。この「アルハーゼンの問題」は17世紀欧州の数学者たちの興味を引き、ホイヘンスが非常にエレガントな別解を与えている[注 17]

屈折光学に於いては、入射角と屈折角の間に成り立つ定性的な関係や不等式をいくつか提示し、それらに基づいて巧妙に球面レンズによる像の拡大や収差などの、光の経路の幾何学的な性質を詳しく論じている[29]。これらの洗練された理論は、のちにTheodoric of Freiberg(英語版)やal-F?ris?(英語版)の虹の研究の土台になる。

屈折の法則の実験的な研究は、彼の主要な業績として紹介されることがある。しかし、彼の実験のスキームには様々な難点が指摘されており、十分な精度は得られなかったと思われ、実際には実施しなかったとする見解もある[注 18]。『光学の書』には、実験の結果の記載はなく、理論で用いている関係式や数値は、プトレマイオス『光学』の屈折についての数表と整合的である。ただし、プトレマイオスの実験が本質的に視線の屈折を対象にしているのに対して、イブン・ハイサムは光線の入射角や屈折角の直接の計測を意図している点は新しい。なお、プトレマイオスの数表は現代の屈折の理論の良好な近似になっており、イブン・ハイサムの用いた関係式や結論も概ね正しい。

また、イブン・ハイサムの屈折光学は、近代以前に於いては突出していることは事実である。古代でも中世でも、彼以前は、イブン・サフル(英語版)を例外として、プトレマイオス『光学』はあまり用いられず、屈折と反射の概念上の区別すら曖昧で、混乱した記述が多くなされていた。彼の『光学の書』は、屈折光学の信頼できる希少な典拠であった。

地平線近辺で天体が拡大されて見える「月の錯視」を地表面近くの水蒸気を多く含んだ大気による屈折と、心理学的な効果の双方で説明しようとした[注 19]
扱われた問題の範囲

『光学の書』で扱われた題材は、概ね古代の光学(幾何学的な視覚論、視学)の範囲を超えない。実際、眼の構造論を除けば、プトレマイオス『光学』と構成を含め、大きく重なる。反射や屈折の問題に於いても、最後は視覚への影響が問題とされる。

それら以外の問題、例えば鏡やレンズによる集光[注 20]、そして、アリストテレス『気象論』以来、主に気象論の対象だったについて、各々論考を著している[注 21]。なお、日の出前の薄明や日没後の薄暮から大気の高さを推測した書『Liber de crepusculis』は彼の名でラテン世界に流通し、今でもイブン・ハイサムに帰する記述があるが、これは12世紀のスペインのイスラム圏の天文学者・数学者 Ibn Mu??dh al-Jayy?n?(en:Ibn Mu??dh al-Jayy?n?)の著作である[33]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:71 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef