アローの不可能性定理
[Wikipedia|▼Menu]
すると、2つの選択肢の間を取り出した多数票は、AはBに勝ち、BはCに勝ち、CはAに勝つことから、3すくみの関係になっている。この状況では、「多数票を得た候補が選挙に勝つ」という極めて基本的な多数決の要件を満たすような集計ルールは、社会的選好が推移的(または非循環的)でなければならないとすると、IIA基準を満足できない。つまり、仮にそのようなルールがIIA基準を満たすとすると、多数票は尊重されるので、社会的選好としてAはBに勝ち(A > Bが2票に対してB > Aは1票)、BはCに勝ち、CはAに勝つので循環が生じる。これは社会的選好が推移的であるとする仮定に矛盾する。

従って、アローの定理が本当に述べているのは多数決制の選挙制度が非自明なゲームだということで、殆どの選挙制度の結果を予見するにはゲーム理論を援用すべきだということである[註 2]。任意のゲームには効率的な均衡が存在するとは限らないので、これは不本意な結果と見ることもできる。例えば、票は投じたものの本来誰1人として望んでいなかったような結果が出てしまう場合がある。
その他の可能性の探求

社会的選択理論では、アローの定理の否定的結論から逃れることを試みて、多くの研究が行われてきた。ここではそれらのうちいくつかを、(i) アローの社会厚生関数と同様の定義域を持つ関数 (人々の選好順序のプロファイルを独立変数とする関数) を考察するもの、(ii) その他の種類のルールを考察するもの、に分類して採り上げる。
個人選好からの関数を考えるアプローチ

この項目には、(i) 社会厚生関数をはじめとする「選好集計ルール」(個人選好のプロファイルから社会的選好への関数) を扱うもの、およびそれ以外の (ii) 選好プロファイルから選択肢などへの関数を扱うもの、が含まれる。この2つのアプローチは重複することも多いので、ここではそれらを同時に扱う。このアプローチの特徴は、アローが課した条件を外したり緩めたり他のもので置き換えたりして可能性を探ることにある。
無限の個人

投票者の人数が有限であるという仮定を外せば、アローの他の条件を全て満たす集計ルールが存在することを一部の研究者が指摘した(例えばKirman & Sondermann,1972[9])。しかし、そのような集計ルールは超フィルターと呼ばれる極めて非構成的な数学的存在に依拠するため、実用上の意味は薄い。特にKirman & Sondermann はそのような集計ルールの背後には「見えざる独裁者」が存在すると述べている[9]。Mihara[10][11]はそのような集計ルールがアルゴリズム的に計算可能でないことを示した[註 3]。これらの結果はアローの定理の堅牢さを示すものだと看做せる[註 4]
選択肢の数の制限

選択肢数が2つのケースについては、単純多数決だけがいくつかの望ましい条件 (選択肢や投票者を平等に扱うこと、選択肢に対する支持の増加がマイナスの効果を与えないことなど) を満たすことをメイの定理が示している。一方でアローの定理は3つ以上の選択肢があるときの集団的決定の困難性について述べている。なぜ選択肢が3個未満のときと3個以上のときとで歴然とした差が出るのかをより一般的に示したのが (シンプルゲームのコアにかかわる)「中村の定理」で、これは選択肢の数が「中村ナンバー」とよばれる整数未満であれば意思決定ルールはうまく選択を行え、その整数以上であれば人々の選好によっては循環 (投票のパラドックス) が起きることを示している。多数決の中村ナンバーは (投票者が4人のケースを除けば) 3 であることから、中村の定理より、多数決は2個までの選択肢からならうまく選択を行えることが分かる。 過半数を超える支持 (全体の2/3など supermajority) を要求するルールでは中村ナンバーが 3 より大きくなることがあるが、そのようなルールはアローの別の条件を満たさない[註 5]
定義域の制限

選好集計ルールの定義域、すなわち想定する選好を制限するアプローチとしては「単峰性」を仮定するものが有名である。

選択肢がある順序で左から右へと並んでいるとする。選好がこの順序に関して「単峰型である」とは、あるピークとなる選択肢が存在し、そのピークから左側に行くほど望ましくない選択肢に、またそのピークから右側に行くほど望ましくない選択肢になることである (横軸に選択肢を順序通り並べたとき、効用関数のグラフが一点だけピークを持つ)。与えられた選択肢の順序に関して全員の選好が単峰型であるようなプロファイルに定義域を限定すれば、多数決をはじめとする (「シンプル」と呼ばれる) 集計ルールは非循環的な (後述) 社会的選好を持つ。特に奇数人の多数決では社会的選好は推移的になり、「ベストな」選択肢は各個人のピークの中央値になる (Black の「中位投票者定理[14]。多次元の選択肢集合でも「単峰型である」選好を定義することはできるが、「中央値」にあたる選択肢が特定できるのは例外的ケースにすぎず、通常は McKelvey の「カオス定理」[15]が示す破壊的な結果(すなわち任意の選択肢 x {\displaystyle x} , y {\displaystyle y} について、 x {\displaystyle x} に x 1 {\displaystyle x_{1}} が多数決で勝ち、 x 1 {\displaystyle x_{1}} に x 2 {\displaystyle x_{2}} が多数決で勝ち、… 、 x k {\displaystyle x_{k}} に y {\displaystyle y} が多数決で勝つような選択肢の列を見つけることができる) になる。
推移性の緩和

社会的選好の推移性を緩和することにより、アローの他の条件を満たす独裁的でない選好集計ルールが存在することが知られている。しかしそれらの関数に中立性 (選択肢を平等に扱う条件) を課すと「拒否権」を持つ個人が存在するため、このアプローチによる解決の効果も限定的である。まず社会的選好が推移的であるという要求を弱めて、「半推移的である」 (「より望ましい」を表す強選好 ≻ {\displaystyle \succ } が推移的であること: x ≻ y {\displaystyle x\succ y} かつ y ≻ z {\displaystyle y\succ z} ならば x ≻ z {\displaystyle x\succ z} となる)ことをだけを要求すれば、たしかに独裁者のいない選好集計ルールは存在するが、そのような関数では「寡頭制」(oligarchy) が生じる (Gibbard, 1969)。すなわちある提携 L が存在し、L 自体は「決定力を持ち」(decisive; L のメンバー全てが x を y より好めば社会的選好で x が y より望ましくなる)、L のメンバー1人1人が「拒否権を持つ」 (彼が x を y より好めば、社会的選好で y が x より望ましくなることを阻止できる)。社会的選好が推移的であるという要求を弱めて、「非循環的である」(次のような循環を生じる選択肢 x 1 , … , x k {\displaystyle x_{1},\ldots ,x_{k}} が存在しない: x 1 ≻ x 2 {\displaystyle x_{1}\succ x_{2}} , x 2 ≻ x 3 {\displaystyle x_{2}\succ x_{3}} , … {\displaystyle \ldots } , x k − 1 ≻ x k {\displaystyle x_{k-1}\succ x_{k}} , x k ≻ x 1 {\displaystyle x_{k}\succ x_{1}} )ことをだけを要求すれば、選択肢数が個人の人数以上という制約の下では、「合議政体」(collegium) が生じる(Brown,1975[16])。すなわち決定力を持つようなすべての提携の共通部分 (collegium) に属するような個人が存在する。もし拒否権を持つ個人がいればこの共通部分に属する。さらに中立性を要求すれば拒否権を持つ個人は実際に存在する[13]。Brown の定理で空白とされた選択肢数が個人の数未満で非循環性だけを仮定したケースについては、中村ナンバーが決定的な役割を持つ。「選択肢の数の制限」の項目を参照。
無関係対象からの独立性 (IIA) の緩和

無関係対象からの独立性以外の条件をみたす選好集計ルールの例としては、ボルダのルールをはじめ多く存在する。

しかし、これらのルールは戦略的操作に左右されるという問題がある[17]
社会的選好ではなく社会的選択

社会的な意思決定においては、全ての選択肢について順序付けを得ることは普通は目的ではなく、何らかの選択肢を選べば済むことが多い。このアプローチは、選好プロファイルを選択肢へ移す「社会的選択関数」か、または選好プロファイルを選択肢の部分集合に移す「社会的選択ルール」を考察の対象とする。社会的選択関数についてはギバード=サタースウェイトの定理がよく知られている。これは3つ以上の選択肢を値域に含む社会的選択関数が戦略に影響されないなら、その関数は独裁的であることを示している。

社会的選択ルールについては、その背後に、ある社会的選好が存在すると仮定する必要がある。つまり、何らかの社会的選好による極大要素 (「最良の」選択肢) を選択するルールを考える。ある社会的選好による極大要素の集合を「コア」と呼ぶ。コアの中に選択肢が存在するための条件について、これまで2つのアプローチによって調べられてきた。第一のアプローチは、選好が少なくとも非循環的であること (これは選好が任意の有限な部分集合上で極大要素を持つための必要十分条件である) を仮定する。このため推移性の緩和と密接に関連する。

もうひとつのアプローチは非循環的な選好の仮定を捨てる。Kumabe & Mihara (2010)[18]はこちらを採用している。その中では、より直接的に個人の選好が極大要素を持つと仮定した上で、社会的選好が極大要素を持つための条件を検証している。これら2つのアプローチの詳細については中村ナンバーを参照のこと。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:73 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef