アルカリ金属
[Wikipedia|▼Menu]
彼の表では、当時知られている全てのアルカリ金属(リチウムからセシウム)のほか、タリウムが1つの族にまとめらていれた。また彼の表では、水素をハロゲン(第17族元素)と一緒に置いていた[17]1871年に提唱されたドミトリ・メンデレーエフの周期体系では、水素とアルカリ金属が第1族元素に置かれ、一緒に銅、銀、金も置かれていた。

1869年以降にドミトリ・メンデレーエフは、ナトリウム、カリウム、ルビジウム、セシウム、タリウムを含む族の一番上にリチウムを配置する周期表を提唱した[24]。2年後に彼は自分の表を改訂し、水素をリチウムの上の第1族に配置し、タリウムをホウ素族に移した。この1871年版では、銅と銀と金が2か所に配置されており、1か所はIB族(現:第11族元素)に、もう1か所はVIII族(現:第8族元素から第11族までを含む)に配置されていた[25]。18列からなる周期表の導入後、IB族元素は現在のDブロック元素の位置に移動し、アルカリ金属はIA族に残った。後の1988年に、この族の名が「第1族」に変更された。「アルカリ金属」という慣用名は、第1族元素の水酸化物が水に溶けたときに全て強アルカリ性であるという事実に由来している[26]

1939年にキュリー研究所 (パリ)マルグリット・ペレーアクチニウム227のサンプルを精製することでフランシウムを発見したが、その前に少なくとも4つの誤った発見や不完全な発見があった[27][28][29]。彼女は80keV未満のエネルギー準位の崩壊素粒子に着目。この崩壊活動がまだ未特定な崩壊生成物によって引き起こされた可能性がある、とペレーは考察した。様々な試験により、その未知の元素がアルカリ金属の化学的性質(セシウム塩との共沈など)を示したことで、ペレーはそれをアクチニウム227のアルファ崩壊によって引き起こされた元素番号87の元素だと確信した[30]。227
89Ac α (1.38%)→21.77 y 223
87Fr β-→22 min 223
88Ra α→11.4 d219
86Rn

周期表でフランシウムの下に存在する筈だとされている第1族元素が、元素番号119の仮名ウンウンエンニウム(Uue)である[31]:1729-1730。ウンウンエンニウム合成の試みは、1985年に米カリフォルニア州の重イオン線形加速器(superHILAC)で標的のアインスタイニウム254にカルシウム48イオンを衝突させる実験が初めて行われたが、同原子は確認されなかった[32][33]。254
99Es + 48
20Ca → 302119Uue* → 原子できず[注 1]

アインスタイニウム254(これは質量が大きく、半減期が270日と比較的長く、超重元素の製造に適している)[34]を実験に充分なほど製造する作業も非常に困難であることを考えると、近い将来にこの反応がウンウンエンニウム元素を生じさせる可能性は極めて低い[32]。アインスタイニウムは自然界で発見されておらず実験室で作られるのみであり、超重元素の効率的合成に必要な量よりも少ない量しか製造されていないためである。ただし、ウンウンエンニウムが拡張周期表で最初の第8周期元素に過ぎないことを考えると、近い将来に他の反応から発見される可能性があり、実際に日本で合成の試みが現在進行中である[35][36]。 2022年現在、第8周期元素はまだ発見されていないが、中性子ドリップラインの不安定性から最大で元素番号128辺りまでの第8周期元素が物理的に生成できる可能性がある[37][38]。これ以上に重い第1族元素合成の試みは行われておらず、その非常に大きな元素番号のため、生成するには現時点以上に強力かつ新たな技術手法が必要になる筈だとされている[31]:1737-1739。
性質

通常アルカリ金属に分類されるリチウム、ナトリウム、カリウム、ルビジウム、セシウムは性質が非常に似通っている。ただしリチウムは直接窒素と反応するなど、一部の物性において他のアルカリ金属元素とは異なった性質を有している[39]

また、還元性を持ち、水素を除いてその酸化数は常に+1となる。アルカリ金属においては原子番号が上がるほど化学反応性、密度は大きくなり、融点、沸点は下がるという性質を持つ。

第1族元素に分類されている水素は他のアルカリ金属元素とは性質が著しく異なる。この違いは電子配置の閉殻構造の有無に起因する。アルカリ金属元素の場合、一価の陽イオンが生成すると閉殻構造の寄与により非常に安定化する。一方、水素の陽イオンであるプロトンはむき出しの正電荷であるため、電子を核から引き離すためのイオン化エネルギーが非常に大きく、閉殻構造が無く安定化の寄与が存在しない。このようなs電子のふるまいの違いが、水素には共有結合性を与え、アルカリ金属元素には金属性を与えることになる。

リチウムとその他のアルカリ金属元素の違いは、リチウムのイオン半径に起因している。リチウムはイオン半径が小さいため、電荷/イオン半径比が他のアルカリ金属元素と比較して著しく大きい。そのため、反応性や化合物の性質において、1価のアルカリ金属イオンよりもむしろ、同様に電荷/イオン半径比の大きい2価のアルカリ土類金属元素であるマグネシウムイオンに類似した性質を示す[39]。例えば、リチウムはマグネシウムと同様、窒素と直接反応して窒化物を形成するが、他のアルカリ金属元素は窒素に対して反応しない。また、リチウムの硫酸塩は、他のアルカリ金属の硫酸塩がミョウバンを形成するのと対照的に、ミョウバンを形成しない[40]

第1族元素は、仕事関数が小さく、原子半径が大きいという特徴がある。

 水素
1Hリチウム
3Liナトリウム
11Naカリウム
19Kルビジウム
37Rbセシウム
55Csフランシウム
87Fr
電子配置1s1[He]2s1[Ne]3s1[Ar]4s1[Kr]5s1[Xe]6s1[Rn]7s1
第1イオン化エネルギー
(kJ・mol?1)1312513.3495.8418.8403.0375.7392.8
電子付加エンタルピー
(kJ・mol?1)????46.8845.51?
電子親和力
(kJ・mol?1)72.7759.6352.87????
電気陰性度
(Allred?Rochow)2.200.971.010.910.890.86?
イオン半径
(pm, M+)?4 (2配位)73 (4配位)
90 (6配位)113 (4配位)
116 (6配位)152 (6配位)
165 (8配位)166 (6配位)
175 (8配位)181 (6配位)
202 (12配位)?
共有結合半径
(pm)37134154196211225260
van der Waals半径
(pm)120182227275244343348
融点
(K)14.025453.69370.87336.53312.46301.59300
沸点
(K)20.268161511561032961944950
還元電位 E0 (V, M+/M)0?3.040?2.713?2.929?2.924?2.923?

単体金属アルカリ金属単体のサンプル

アルカリ金属の単体は、すべて銀色の金属光沢を放つ金属である。電気伝導性および熱伝導性は、他の金属と同様極めて良好である。しかし、それ以外の性質は、他の金属と比べて特異的である。第一に、ほとんどの金属が高い融点を持つ中で、アルカリ金属は比較的融点が低く、かつ重い元素ほど低い。セシウムは常温より少しだけ高い29℃で融解する。ナトリウムはその高い熱伝導性と低い融点(98℃)が故に、原子炉の冷却材としても用いられる。また、アルカリ金属は他の金属と比べて非常に柔らかい金属である。リチウムはナイフで切断でき、カリウムはバターのように押しつぶすことができる。さらに特異な性質として、その密度の低さがあげられる。リチウム、ナトリウム、カリウムは比重が1以下で水に浮く。特にリチウムの密度は水の半分程度で、もし反応性と柔らかさにさえ目をつぶれば、船を造るのに最適な金属であろう。

いずれも反応性は高く、周期表の周期が大きくなるほど、結晶エネルギー(解離エンタルピー)が低減するため、激しく反応する傾向が見られる。リチウムおよびナトリウムの単体金属を得るためには、これらの酸化還元電位がいずれも非常に低い(つまり非常に還元されにくい)が、溶融塩を電気分解することで生産することができる[41]。(水溶液だとH2Oが分解され水素が発生する)カリウム、ルビジウム、セシウムは低融点かつ気化しやすいため単純な電気分解による生産には適しておらず、カリウムは溶融させた塩化カリウムをナトリウム蒸気と反応させることで作られ、ルビジウムおよびセシウムはそれぞれの水酸化物を金属マグネシウムや金属カルシウムによって還元させることで得られる[42][43]。代表的な工業生産法には、溶融した塩化ナトリウム融点降下剤として塩化カルシウムを加え、それを電気分解することで金属ナトリウムを得るダウンズ法がある[44]。このアルカリ金属元素の強い還元性は他にも、有機化学の分野におけるバーチ還元 (Bürch reduction) などに利用される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:107 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef