アビオニクス
[Wikipedia|▼Menu]
このコードは各航空機ごとに特有であり、音声による交信が不可能であっても航空機を識別することができる。また、航空交通管制レーダーシステムからトラフィック情報を受け取って、機上のディスプレイに表示することができる。

IFFトランスポンダ、すなわち敵味方識別装置軍用機で使われており、民間の航空交通管制で使われているモード以外にも特別なモードを持っている。
補助システムと診断システム

商業用航空機(旅客機や貨物機)は機体価格が高い上、飛行している間しか利益を生まない。このため、有能な運用者(航空会社)は、ハンガー(格納庫)で時間を掛けて整備を行うのではなく、飛行中や空港での飛行間待機といった運航中に可能な限りの保守・点検業務をこなしてしまおうと考える。これを可能とするため、運航中に組み込みコンピュータシステムが航空機の各種システムをテストし、制御下にある機器の不具合情報を収集する。こうした情報は通常、機上の整備用コンピュータに集められる。時には、次の空港に到着し次第すぐに交換できるよう、必要となる部品の情報を前もって電送することもある。一見理想的なシステムのように思えるが、実際には、こうした自己診断システムを備える機器は飛行に不可欠ではないことが多く、結局、信頼性に乏しいこともままある。単に「この装置が何らかの保守を必要としていることは確かだ」といった程度の信頼性しかない場合もある。
最近の技術

1990年代ごろ以降、GPS受信機と、「グラスコックピット」と形容される表示システムの出現でアビオニクスは大きな変貌を遂げた。
グローバル・ポジショニング・システム (GPS)

グローバル・ポジショニング・システム(GPS)の出現により、航路飛行中と着陸進入中のいずれの航法も変化することとなった。
航路飛行における変化

これまでの航空機は、ある無線航法援助施設から次の施設へと飛んでいく(例えばVOR局を次々と経由していく)のが一般的であった。この航法援助施設間の経路を航空路と呼ぶ。航空路は地上のVORなどの局を結ぶものであるため折れ曲がっており、空港間の最短経路ではないことが多いが、計器飛行により正確に飛行するためにはこれに沿って飛行するしかなかった。GPSはこの状況を変え、地上からの援助なしに、空港から空港へと直行することが可能となった(広域航法)。これにより、時間と燃料を大きく節約できる可能性がある。

しかし、このような直行飛行方式は航空交通管制 (ATC) 上の大きな問題を引き起こすことになる。ATCの基本的な目的は、飛行している航空機の十分な垂直・水平間隔(管制間隔)を維持することである。直行飛行を行うと、この間隔の維持が困難となる。自動車の交通を想像してみるとよい: 航空路は道路にたとえることができる。もしも道路というものが存在せず、各ドライバーがめいめいに目的地めがけて運転したならば、大変な混沌状態におちいってしまうだろう。例えると仕切りも線もない巨大な駐車場のようなものである。ATCは実際に直行飛行の許可を与えることもあるが、広範な利用には至っていない。アメリカ連邦航空局 (FAA) やNASAが構想中の「フリーフライト」のような計画では、管制システムをコンピュータ化することで、空中衝突の危険性を検出・予測し、管制間隔を維持するための機動を機体へ提供し、結果として直行飛行の大幅な利用促進を可能にできるとしている。これは既存の衝突防止(警報)装置 (TCAS) に似ているが、より大規模であり、より先の出来事を予測することになる。
着陸進入における変化

GPSは、飛行の最終段階、着陸進入にも大きな変化をもたらした。

水平視程と垂直雲底が有視界飛行方式 (VFR) の限度以下の時には、航空機は計器飛行方式 (IFR) によって飛行しなければならない。IFRの下では、航法装置を使って航行することが必要となる。これは特に進入と着陸時に重要となる。特定の滑走路に着陸するために用いられる降下経路と手順は、計器進入と呼ばれる。

これまでIFRによる進入では、VOR・NDBおよびILSといった地上に設置された航法援助施設を必要としていた。GPSを使えばこうした地上施設は不要となり、コストを下げられる。ILS施設を設置する余力のない多くの小規模空港でも機器進入が可能となった。GPS受信機も他の受信機に比べ安価であり、アンテナは小型ものが1つあればよく、較正はほとんど必要としない。

GPSを利用した進入の否定的側面は、この方式を利用できる最低の視程と雲底高度が大きいことである。ILSを利用できる最低気象条件は、典型的なもので、雲底が地上から200フィート (61 m) 以上、水平視程が1/4マイル (402 m) 以上となっている[要出典]。一方のGPSは、雲底高度が400フィート (122 m) 以上、水平視程が1マイル (1,609 m) 以上ないと利用できない。この違いは、GPS進入が水平方向の誘導しかできないことに原因がある。垂直方向の誘導も可能ではあるが、その精度は水平方向ほどではない。この問題を解決するため、FAAは広域増強システム (Wide Area Augmentation System, WAAS) を導入した。WAAS機能を備えたGPS受信機は垂直方向にも2 - 3メートルの精度がある。これはILS同様の垂直方向誘導を含んだ進入を実現するのに十分な精度である。垂直誘導GPS進入が可能であるとの認証を受けたGPS/WAAS受信機は徐々に市場に出回りつつある。

当初FAAは、計器進入に際してのGPS使用の許可を渋ったものの、公表されるGPS進入の数は急激に増えつつある。それでもなお、ILSの方がより厳しい水平視程と雲底高度の条件で使用できるため、現時点でもILSは最善の進入方式であり、FAAはILS設備は維持すると表明している。
グラスコックピットエアバスA380のグラスコックピット

コンピュータ性能の進歩とフラットパネル液晶ディスプレイによってグラスコックピットが可能になった。大まかに定義すると、グラスコックピットというのは、複数の電子表示装置に情報を表示する操縦室のことである。これはパイロットへの負荷(ワークロード)を大きく減らし、指針が回転する伝統的な「蒸気圧力計」型の計器で満たされた操縦室に比べ状況認識 (situational awareness) を改善した。

グラスコックピットは当初大型旅客機と軍用機で導入された。前後して多くのビジネスジェットが取り入れ、近年ではガーミン軽飛行機にも搭載できるシステムを開発し、新造機へのOEM供給やアナログ計器からの換装キットを販売したことで広く普及している。
脚注[脚注の使い方]^ 三菱重工がMRJに全力で挑む"真の意味" - 東洋経済オンライン

関連項目

慣性計測装置 (IMU)

慣性誘導装置 (INS, IRS)

気象レーダー

TCAS

ブラックボックス (航空)

対地接近警報装置 (GPWS, EGPWS)

航空電子整備員

航空交通管制

ベトロニクス

アストロニクス(宇宙船に搭載される電子機器)










航空機部品および航空機システム(英語版)
機体構造

圧力隔壁

カバネストラット(英語版)

キャノピー

クラックアレスタ(英語版)

航空機ドープ(英語版)

航空機ファブリックカバー(英語版)

航空機フェアリング(英語版)

フライングワイヤー(英語版)

フォーマー(英語版)

胴体

ハードポイント

インタープレーンストラット(英語版)

ジュリーストラット(英語版)

前縁

リフトストラット(英語版)

ロンジロン(英語版)

ナセル

リブ (航空工学)(英語版)

翼桁

ストレススキン(英語版)

ストラット

後縁(英語版)

翼付根

翼端

ウィングボックス(英語版)

スタビライザー

尾翼

水平尾翼

垂直尾翼

V字尾翼

T字尾翼

十字尾翼

ツインテール

トリプルテール


フライトコントロール(英語版)

オートパイロット

電気油圧アクチュエータ(英語版)

フライトコントロールモード(英語版)

フライ・バイ・ワイヤ

ガストロック(英語版)

水平尾翼

カナード


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:37 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef