アクアリウム
[Wikipedia|▼Menu]
最初の近代的アクアリウムに入れるための魚と植物は、野生から採取されヨーロッパとアメリカの港へ(通常船で)輸送された。20世紀初期には、小さなカラフルな熱帯魚の多くの種が捕獲され、ブラジルマナウスタイ(シャム)のバンコクインドネシアジャカルタ、オランダ領西インド諸島、インドカルカッタ、その他の熱帯の港から輸出された。アクアリウム向けの商業ルートのために天然から魚、植物および無脊椎動物を捕獲することは、今日も世界中で続いている。世界の多くの場所で、貧しい地元住民が、収入の主な手段としてアクアリウム用標本を集め売りさばく。それは、今なお人工繁殖に成功していない多くの種の供給源であり、また熱心なアクアリウム保有者に新しい種を供給し続けている。

最終的にアクアリウムに展示するために天然の生物を捕獲することは、いくらかの問題をはらんでいる。捕獲旅行は長く、高価になりえ、必ずしも成功するとは限らない。輸送のプロセスは、輸送される魚には非常に危険であり、死亡率は高い。そうでなくとも多くのものがストレスによって弱り、到着したときには病気になっている。魚も収集プロセス自体で痛めつけられることがある。最も顕著なものは、捕獲をより容易にするため暗礁魚を気絶させるためにシアン化合物を使用するものである。

より最近では、魚と植物を集めることの潜在的な環境への悪影響は、世界的にアクアリウム保有者たちの注意するところとなった。これらの悪影響は、珊瑚礁および目標でない種への毒散布、自然の生息地からの稀少種の減少、および主要種の大規模減少による生態系の劣化などである。さらに、使用される破壊的な技法は、環境保護論者とアクアリウム保有者への憂慮するところとなってきた。したがって、人工繁殖計画および天然で捕獲された魚の認証プログラムによって、商業ルートに乗った天然で捕獲された標本への依存を減らすよう、多くの関係のあるアクアリウム保有者による申し合わせ運動があった。1997年に行われた調査では、アメリカの海水アクアリウム保有者たちの3分の2が、天然で採取した珊瑚の代わりに人工養殖した珊瑚を購入することを好むと答えた。また、持続可能なように捕獲されたまたは人工的に養殖した魚だけが貿易に許可されるべきと答えた人が80%以上だった。

ベタが1893年にフランスで最初に養殖に成功して以来、人工繁殖の技法が次第に発見されてきた。アクアリウム貿易のための人工繁殖は、現在南フロリダシンガポール香港およびバンコクに集中しているが、ハワイスリランカにも小さな産業がある。アクアリウム貿易用の海生生物の人工繁殖プログラムは、1990年代中頃以来、急速に発展しつつある。海水の種よりも、真水の種のための繁殖プログラムのほうが比較的進んでいる。

養殖は管理された環境中で水生生物を育成することである。アクアリウム貿易へ供給するための養殖プログラムの支持者は、十分計画を練ったプログラムは環境だけでなくそのまわりの社会にも利益をもたらすことができると主張している。養殖は、成長させた成体を直接販売するか、それらをリリースして野生のストック(Tlusty 203)を補充することによって、野生種への衝撃を減少させる助けになる。ただし、そのような行為はいくつかの環境リスクに関係している。
生態系

アクアリウムの生態系は、自然界で見られる平衡をアクアリウムの閉じた系で再現するのが理想であるが、実際には、完全なバランスを維持することは事実上不可能である。例えば、最大のアクアリウムでさえバランスのとれた捕食-被食関係を維持することはほとんど不可能である。普通は、アクアリウムに入る小さな生態系の中で平衡を維持する手段を取らなければならない。

多量の水を使うことで近似的平衡を構築できる。システムを乱すどんな出来事も、アクアリウムを平衡から遠ざけるのだが、水槽により多くの水があれば、出来事の影響が薄められるので、系統の衝撃を吸収することがより容易になる。例えば、11リットルの水槽中では魚が1匹死んだだけでもシステムに劇的な変化を引き起こす一方、その同じ魚の死が他に多くの魚がいる400リットルの水槽中であれば、水槽のバランスは少ししか変化しない。こういう理由で、平衡を維持するのにそれほど注意を必要としない安定したシステムであるために、しばしばできるだけ大きな水槽が好まれる。
窒素循環

管理の上で重要な課題として、アクアリウムの住民によって作られる生物学的廃物の管理がある。

魚、無脊椎動物、菌類および一部のバクテリアは、アンモニアの形で不用の窒素を排泄する。アンモニア(水化学によってはアンモニウム塩に変換されることがある)はその後、窒素循環を通り抜けなければならない。アンモニアは、糞やその他の廃物を含む植物および動物質の分解によっても発生する。窒素廃棄物は、高濃度では魚および他のアクアリウム住民にとって有毒になる。

バランスの取れている水槽は、他のアクアリウム居住者の廃棄物を物質交代することができる分解者を含んでいる。水槽中で発生した窒素廃棄物は、硝化細菌(Nitrosomonas; ニトロソモナス属)として知られている一種のバクテリアによってアクアリウムの中で物質交代される。硝化バクテリアは、水中のアンモニアを捕らえて、亜硝酸塩を生産する。亜硝酸塩もまた、高濃度中では魚にとって極めて有毒である。

別のタイプの細菌(Nitrospira; ニトロスピラ属)は、亜硝酸塩をアクアリウム住民にそれほど有毒でない硝酸塩へ変換する(以前はニトロバクター属(Nitrobacter)のバクテリアがこの役割を担うと考えられており、アクアリウムの窒素循環が「すぐ始められる」キットとして市販された。生物学の理論上、それらはニトロスピラと同じスキ間を満たすことができるのではあるが、最近ではニトロバクターは確立したアクアリウム中に検知できるレベルでは存在せず、一方、ニトロスピラは豊富であることが分かった)。このプロセスは窒素循環として知られている。

バクテリアに加えて、水生植物もまたアンモニアと硝酸塩を物質交換して窒素廃棄物を除去する。植物は窒素合成物を取り入れ、それを同化してバイオマスを生産するために使用することにより、水から窒素を取り除く。しかし、古い葉が次々に死んで分解するときに、窒素が水へ再放出されるので、窒素の除去は一時的なものである。

非公式に窒素循環と呼ばれているこれは、実際には、真のサイクルの一部分でしかない:窒素がシステムに加えられる(通常水槽住民に供給される食物による)都合上、プロセスの終わりは硝酸塩が水に蓄積する(あるいは植物の炭酸同化作用によってバイオマスの増加に寄与する)。実際上、こうして家庭用アクアリウムの中には硝酸塩が蓄積するので、定期的に水を交換し、硝酸塩濃度の高い水槽から水を取り除き、それを硝酸塩濃度の低い水に取り替えなければならない。

一般家庭でのアクアリウム程度の水槽の容積では、しばしば水槽内の生物から発生する窒素を無害化するのに十分なバクテリアの必要個体数を満たしていない。この問題には、2つの濾過方式が最もしばしば提示される。活性炭フィルタは水から窒素合成物等の毒素を吸収する一方で、生物濾過フィルタは有益な硝化バクテリアが繁殖しやすいように設計されたろ材を提供している。

この窒素循環では、家庭向けの水槽内において自然界に見られる閉じた生物的な循環系を完全に再現させることは、2006年現在において決定的な方法は存在しない。様々な方法が試みられているが、そのいずれもが非常に導入コストの掛かるものか、定期的な水の交換(何割かずつ)によって硝酸塩濃度の低減を行うまでの期間を延長させる程度に過ぎない。
サイクリング

設置されたばかりのアクアリウムでは通常、窒素廃棄物を処理するバクテリアが十分な数に達していない。このようなバクテリアをアクアリウムに定着させる過程をサイクリング(立ち上げ)と呼ぶ。一般的な方法としては、窒素廃棄物の発生源として、それらの蓄積に強い(そして一般に安価な)魚を用い、それらから生じる窒素廃棄物を餌にバクテリアが増殖するのを待つ。この、最初に投入される魚を一般にパイロットフィッシュと呼称する。丈夫な魚を使うとはいえバクテリアの量が十分でないサイクリングの過程では、水中の窒素廃棄物濃度はすぐに魚にとっての致死量に達するため、これらを抑えるために頻繁な換水を必要とする。有毒な窒素廃棄物の濃度を確認するためにしばしば試験紙や試薬による監視が行われる。このような手間や時間をかけず「すぐに始める」方法もいくつか存在する。例えば、バクテリアを含んでいる水添加剤を用いることや、別のアクアリウムから底砂や生物濾材(これらの表面には成熟したバクテリアのコロニーのが存在する)を新しい水槽に移すことなどである。

近年人気のある他のサイクリング法には、フィッシュレス・サイクリングおよびサイレント・サイクリングがある。前者はその名前が意味する通り、窒素酸化物の発生源として魚を用いることをしない。代わりに、バクテリアの餌として水槽に少量のアンモニアを加える。この方法において、窒素廃棄物(アンモニア、亜硝酸塩および硝酸塩)レベルのチェックはもっぱら、サイクリングの進捗状況を確認するために行われる。サイレント・サイクリングは、成長の速い水生植物をアクアリウムに大量に投入するだけであり、窒素廃棄物の分解はバクテリアではなくそれらに依存する。水草水槽を専門に扱うアクアリウム保有者の報告によれば、植物が窒素廃棄物を非常に効率的に消費することができるので、従来のサイクリング方法で通常見られるアンモニアと亜硝酸塩の蓄積は、あったとしても非常に小さいものになる。

誤った方法でサイクリングされたアクアリウムは、有毒な窒素廃棄物がすぐに蓄積し、中の魚などを殺すことがある。
他の栄養素サイクル

窒素はアクアリウムで循環するただ一つの栄養素ではない。溶存酸素は、表面の気水界面、あるいは空気ポンプの動作を通じてシステムに導入される。二酸化炭素はシステムから大気へ漏洩する。リン酸塩サイクルは、見落とされがちだが、重要な栄養サイクルである。硫黄、鉄および微量元素もまた、食物として系に導入され、廃物として出るという風に循環する。十分にバランスのとれた餌を供給し生物学的負荷を考慮することを通じて窒素循環を適切に取り扱うならば、通常これらの他の栄養サイクルを近似的平衡に維持するには十分である。
生物学的負荷

生物学的負荷は、生きている住民がアクアリウムの生態系に与える負担の基準である。アクアリウムで生物学的負荷が高いと、水槽内の生態系はより複雑になり、ひいては平衡がより乱れやすくなる。加えて、生物学的負荷には、アクアリウムのサイズに基くいくつかの基本的制約がある。空気に露出している水の表面積は、水槽内の溶存酸素の摂取を制限する。硝化バクテリアの量は、それらがコロニーを作るのに利用できる物理的な空間によって制限される。物理的に、あるサイズと数の動植物は、まだ移動の余地があるアクアリウムにしか適合しない。

系に過負荷をかけることを防ぐために、およその目安がある。恐らく最も広く知られたものは「魚1インチについて1米ガロン」の規則である。これはアクアリウムで飼われているすべての魚の長さのインチの合計(尾の長さを除く)が、米ガロンで測られた水槽の容量を超えてはならないと定めるものである(水1リットルに対し約7mm)。この規則は、混雑により成長の成長を妨げないように、通常は成魚の予想サイズについて適用される。金魚などの廃物が多い魚については、空間割り当てを2倍にし、魚の1インチについて2ガロンとすることが推奨されている。

真の最大あるいは理想的システムの生物学的負荷は、理論的なレベルでさえ、計算することが非常に困難である。計算で割り出すためには、廃物の発生率、硝化作用の効率、水面のガス交換速度および他に多くのものの変数が決定される必要があるだろう。実際上、これは非常に複雑で困難なタスクである。したがって、ほとんどの場合、生物学的負荷を適切なレベルにするために試行錯誤とおよその目安を併用する。
環境
淡水

塩分濃度が0.5%未満の場合を指す。最も手軽なため、まずここから入門することが多い。水草の種類が非常に多いことが特徴。水草、流木、石などを用いてレイアウトを楽しむこともある。
汽水

塩分濃度が0.5% - 5%程度の場合を指す。塩分濃度は人工海水で調整する。汽水の生物は淡水かあるいは海水で飼育できることがある。一方、淡水の生物は淡水、海水の生物は海水でなければ飼育できないことが多いため、汽水の生物をどちらかの水槽で飼育してしまうことが多い。ただし、ヤマトヌマエビのように繁殖できなかったり、イシマキガイのように長生きできないことがある。
海水

塩分濃度が5% - 18%程度の場合を指す。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:72 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef