顕微鏡
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、顕微鏡の機器全般について説明しています。光学顕微鏡については「光学顕微鏡」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "顕微鏡" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2017年4月)

顕微鏡
Microscope
用途小標本の観察
著名な実験細胞の発見
関連器具光学顕微鏡 電子顕微鏡

顕微鏡(けんびきょう、: microscope)は、肉眼で見るには小さすぎる物体を調べるために使われる実験器具である。古代ギリシャ語の μικρ??(mikros)「小さい」と σκοπ?ω(skope?)「見る、検査する」に由来する。顕微鏡検査法(英語版)(microscopy)は、顕微鏡を使用して小さな物体や構造を調べる科学をいう。微視的(microscopic)とは、顕微鏡の助けなしでは目に見えないことを意味する。

顕微鏡にはさまざまな種類があり、さまざまな視点から分類される。その一つは、装置が試料と相互作用して画像を生成する方法に着目するもので、電子のビームを光路内の試料に照射したり、試料から放出される光子や電子を検出したり、プローブを用いて試料表面の近傍を走査するなどがある。最も一般的な顕微鏡(そして最初に発明された顕微鏡)は光学顕微鏡で、薄く作成した試料を通過した可視光レンズを使って屈折させ、観察可能な画像を生成する。その他の主な顕微鏡の種類には、蛍光顕微鏡電子顕微鏡透過型電子顕微鏡走査型電子顕微鏡の両方)、各種の走査型プローブ顕微鏡がある[1]
歴史詳細は「顕微鏡技術の年表(英語版)」および「光学顕微鏡#歴史(英語版)」を参照18世紀の顕微鏡 (パリ工芸博物館収蔵)

レンズのような器具の起源は4,000年前にさかのぼり、ギリシアで水を満たした球体の光学的特性に関する記述(紀元前5世紀)があるほか、その後、何世紀にもわたって光学に関する著作が残されている。単純な顕微鏡(拡大鏡)の最古の使用は、13世紀に眼鏡にレンズが広く使われたことにさかのぼる[2][3][4]。標本の近くに対物レンズを置き、接眼レンズ実像を観察する複式顕微鏡の最も初期の例は、1620年頃に、欧州で登場したことが知られている[5]。顕微鏡の発明者は、長年にわたって多くの主張がなされてきたにもかかわらず不明である。いくつかの説がオランダの眼鏡工房を中心に展開され、1590年にサハリアス・ヤンセン(彼の息子による主張)またはサハリアスの父ハンス・マルテンス、あるいはその両方によって発明されたという主張や[6][7]、隣人でライバルの眼鏡職人であったハンス・リッペルハイ(1608年に最初の望遠鏡で特許を申請)によって発明されたという主張のほか[8]、1619年にロンドンで改良版を持っていたと記されている移住者コルネリウス・ドレベルによって発明されたという主張などもある[9][10]ガリレオ・ガリレイは(複式顕微鏡の発明者とされることもある)、1610年以降、望遠鏡の焦点を近づけて小さな物体を観察できることを発見し、1624年にローマで展示されたドレベルの複式顕微鏡を見た後、彼自身の改良版を作成したようである[11][12][13]ジョバンニ・ファベールは、ガリレオが1625年にアッカデーミア・デイ・リンチェイに提出した複式顕微鏡を「microscope(顕微鏡)」と命名した(ガリレオはこれを「occhiolino(小さな目)」と呼んでいた)[14]ルネ・デカルトは、1637年の著作「Dioptrique(英語版)」で、対象物に向かってへこんだ凹面鏡をレンズと組み合わせ、対象物をその鏡の焦点に取り付けて照明するような顕微鏡について述べている[15]
近代的な光学顕微鏡の進歩カール・ツァイスの双眼複式顕微鏡 (1914年)

顕微鏡の使用に基づく有機組織の顕微鏡解剖学に関する最初の詳細な記述は、ジョヴァンニ・バッティスタ・オディエルナの『L'occhio della mosca(ハエの目)』(1644年)に登場する[16]

1660年代から1670年代にかけて、イタリア、オランダ、イギリスの博物学者たちが、生物学の研究で顕微鏡を使い始めるまで、顕微鏡はおおむね目新しいものであった。一部の生物学史家が組織学の父と呼ぶ、イタリアの科学者マルチェロ・マルピーギは、肺の研究から生物学的構造の分析を始めた。1665年に出版されたロバート・フックの『Micrographia(英語版)(顕微鏡図譜)』は、その印象的な図版が大きな影響を引き起こした。フックは、ガラス糸の端を溶かした小さなガラス球から小さなレンズを作った[15]

アントニ・ファン・レーウェンフックは、単純な単レンズ顕微鏡で300倍もの倍率を達成し、大きな貢献をもたらした。彼は、リベットで留めた2枚の金属板の穴の間に非常に小さなガラス球レンズ(英語版)を挟み、ネジで調整可能な針を取り付けて標本を固定した[17]。その後、ファン・レーウェンフックは赤血球ヤン・スワンメルダムにちなむ)と精子を再発見し、生物の超微細構造を観察するための顕微鏡の普及に貢献した[16]。1676年10月9日、ファン・レーウェンフックは微生物の発見を報告した[18]

複合光学顕微鏡の性能は、試料に光を集める集光レンズ系と、試料からの光をとらえて像を形成する対物レンズの品質、そして正しい使い方に依って決まる[5]。この原理が19世紀後半から20世紀初頭にかけて十分に理解され、開発され、また光源として電球が利用できるようになるまで、初期の器具には限界があった。1893年、アウグスト・ケーラー(英語版)は、光学顕微鏡の理論的な分解能の限界を達成するための、中心的で重要な試料照明の原理であるケーラー照明を考案した。この試料照明法は均一な照明を実現し、初期の試料照明技術によって制約を受けていたコントラストと分解能の課題を克服した。試料照明のさらなる発展は、1953年のフリッツ・ゼルニケによる位相差の発見と、1955年のジョルジュ・ノマルスキー(英語版)による微分干渉コントラスト照明によるものである。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:69 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef