電気化学的勾配
[Wikipedia|▼Menu]
半透性の細胞膜を挟んだイオ濃度と電荷の模式図

電気化学的勾配(でんきかがくてきこうばい、: electrochemical gradient)とは電気化学ポテンシャルの勾配であり、通常は膜を越えて移動するイオンについてのものである。勾配は、化学的勾配(膜を挟んだ溶質濃度の差)と電気的勾配(膜を挟んだ電荷の差)という2つの部分から構成される。透過性の膜を挟んだ両側のイオン濃度が不均等であるときには、イオンは高濃度側から低濃度側へ単純拡散によって膜を越えて移動する。イオンは電荷を持っているため、膜を挟んで電位も形成される。膜を挟んで電荷が不均等に分布している場合、膜の両側で電荷が均等となるまでイオンの拡散を駆動する力が電位差によって生み出される[1]
定義

電気化学的勾配は電気化学ポテンシャルの勾配である。 ∇ μ ¯ i = ∇ μ i ( r → ) + ∇ z i F φ ( r → ) {\displaystyle \nabla {\overline {\mu }}_{i}=\nabla \mu _{i}({\vec {r}})+\nabla z_{i}\mathrm {F} \varphi ({\vec {r}})}

μ i {\displaystyle \mu _{i}} : イオン種 i {\displaystyle i} の
化学ポテンシャル

z i {\displaystyle z_{i}} : イオン種 i {\displaystyle i} の価数

F {\displaystyle \mathrm {F} } : ファラデー定数

φ {\displaystyle \varphi } : 局所電位

概要

電気化学ポテンシャルは電気分析化学や、バッテリーや燃料電池などの産業的応用に重要である。電気化学ポテンシャルはポテンシャルエネルギーの多くの互換可能な形態のうちの1つである。

生物学的過程では、イオンが膜を越えて拡散または能動輸送される方向は電気化学勾配によって決定される。ミトコンドリア葉緑体では、プロトン駆動力(proton motive force)と呼ばれる化学浸透ポテンシャルを形成するためにプロトン勾配が利用される。このポテンシャルエネルギーは、酸化的リン酸化光リン酸化によるATP合成のために利用される[2]

電気化学的勾配は2つの要素から構成される。1つ目は電気的要素であり、脂質膜を挟んだ電荷の差によって生じる。2つ目は化学的要素であり、膜を挟んだイオン濃度の差によって生じる。これら2つの因子の組み合わせによって、膜を越えたイオンの移動の熱力学的に有利な方向が決定される[1][3]

電気化学的勾配は水力発電ダムの水圧に例えられる。膜内部のナトリウム-カリウムポンプなどの膜輸送体は、水のポテンシャルエネルギーを他の物理的・化学的エネルギーに変換するタービンに相当し、膜を通過するイオンはダムの下流に落ちる水に相当する。また、エネルギーを使って水を上流のダム湖へと汲み上げることができるのと同様に、細胞内の化学エネルギーを用いて電気化学的勾配を形成することができる[4][5]
生物学

イオンが細胞膜を通過することで形成される膜電位は、神経伝導、筋収縮ホルモン分泌感覚などの生物学的過程を駆動する。典型的な動物細胞では、細胞内の電位は細胞外に対して-50 mVから-70 mVである[6]

電気化学的勾配は、ミトコンドリアでの酸化的リン酸化におけるプロトン勾配の形成にも関与している。細胞呼吸の最終段階は電子伝達系である。ミトコンドリアの内膜に埋め込まれた4つの複合体が電子伝達系を構成する。しかし、プロトンをマトリックスから膜間腔(IMS)へ汲み上げるのは複合体I、III、IVのみである。系全体として、マトリックスからIMSへ10個のプロトンが移行し、200 mV以上の電気化学ポテンシャルが形成される。これによってプロトンがATP合成酵素を通ってマトリックスへ戻る流れが作られ、ATP合成酵素はADPに無機リン酸を付加することでATPを産生する[7]。このように、プロトンの電気化学的勾配の形成はミトコンドリアでのエネルギー産生に重要である[8]。電子伝達系全体としての反応式は次のようになる。

NADH + 11 H+(matrix) + 1/2 O2 → NAD+ + 10 H+(IMS) + H2O[9]

電子伝達系と同様に、光合成明反応も葉緑体チラコイドのルーメンへプロトンを汲み上げ、ATP合成酵素によるATPの合成を駆動する。プロトン勾配は循環的光リン酸化または非循環的光リン酸化のいずれかによって形成される。非循環的光リン酸化に関与するタンパク質の中で、光化学系II(PSII)、プラストキノンシトクロムb6f複合体はプロトン勾配の形成に直接寄与する。4個の光子がPSIIによって吸収され、8個のプロトンがルーメンへ汲み上げられる[10]。光リン酸化全体としての反応式は次のようになる。

2 NADP+ + 6 H+(stroma) + 2 H2O → 2 NADPH + 8 H+(lumen) + O2[11]

他の輸送体やイオンチャネルもプロトンの電気化学的勾配に寄与している。カリウムチャネルTPK3はCa2+によって活性化され、チラコイドルーメンからストロマへK+を透過させることでpH勾配の形成を助ける。一方、電気的に中性なK+排出アンチポーターKEA3はK+をチラコイドルーメンへ、H+をストロ間へ輸送することで電場の形成を助ける[12]
イオン勾配Na+/K+-ATPアーゼの模式図

イオンは電荷を持つため、単純拡散で膜を通過することはできない。イオンが膜を越えて輸送される機構には、能動輸送受動輸送の2つの機構が存在する。イオンの能動輸送の例としては、Na+/K+-ATPアーゼ(NKA)が挙げられる。NKAはATPからADPと無機リン酸への加水分解を触媒し、ATP1分子の加水分解ごとに3個のNa+が細胞外へ輸送され、2個のK+が細胞内へ輸送される。その結果、細胞内は細胞外よりも負の電位となり、具体的には約-60 mVの膜電位Vmembraneが生じる[5]。受動輸送の例は、Na+、K+、Ca2+、Cl?チャネルを介したイオンの流れが挙げられる。これらのイオンは濃度勾配に従って移動する。例えば、Na+は細胞外で高濃度であるため、Na+はNa+チャネルを通って細胞内へ流入する。細胞内の電位は負であるため、陽イオンの流入によって膜は脱分極し、膜電位はゼロに近くなる。しかし、化学的勾配の影響が電気的勾配の影響よりも大きい限り、Na+は濃度勾配に従って移動し続ける。双方の勾配の影響が等しくなると(Na+の場合、膜電位が約+70 mVに達すると)、駆動力(ΔG)がゼロとなるためNa+の流入は停止する。駆動力の方程式は次のように表される[13][14]

Δ G = R T ln ⁡ c i n c o u t + z F V m e m b r a n e {\displaystyle \Delta G=RT\ln {\frac {c_{\rm {in}}}{c_{\rm {out}}}}+zFV_{\rm {membrane}}} [6]

Rは気体定数、Tは絶対温度、zはイオンの電荷、Fはファラデー定数を表している[15]

細胞内のイオン濃度を次の表に示す。X-はタンパク質の総負電荷を表している。

細胞内のイオン濃度(mM)[16][17][18][19]イオン哺乳類イカ軸索出芽酵母大腸菌海水


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:50 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef