電気二重層
[Wikipedia|▼Menu]
電気二重層の模式図。荷電粒子が界面近傍に最も近づいたときにできる面をシュテルン面、それより界面側をシュテルン層またはヘルムホルツ層、外側をグイ・チャップマン層と呼ぶ。

電気二重層(でんきにじゅうそう、Electrical double layer (EDL))は、流体(荷電粒子が比較的自由に動ける系)中の物体の界面に電位が与えられたときに形成される2層の構造である。

一般に、仕事関数の違いや帯電の影響によって、2つの異なる物質が接する界面には電位差が生じる。そのため、どちらかの物質中で荷電粒子が移動可能であれば、界面には必ず電気二重層が形成される。具体的には、電気分解を行う際の電解液電極界面コロイド粒子と分散媒の界面、半導体pn接合面などについて考えられることが多い。他にも気泡、液滴、多孔質体などの表面に生じる。

電気二重層は、正電荷の表面に固定吸着された陰イオン(または負電荷に吸着した陽イオン)からなる非常に薄い層(Stern-Helmholtz層)と、静電引力の中で拡散しつつ濃度分布が生じる層(拡散層あるいはGouy-Chapman層)の2つの層で構成される。

電気二重層は、微小なスケールでの物質の運動に大きな影響を与えるため、ほとんどの電気化学現象のほか、コロイドの安定性や、Micro-TASでの流体力学などを考える際に重要となる。
電極と電解液の界面

電解液に電極から電位が印加されると、電場によって電解液中のイオンが移動し、陽極にはアニオンが、陰極にはカチオンが集まり、最終的に電極との界面に整列する。この状態は誘電体に外部電位を与えた状態にも似ており、静電容量を持つことから、一定の電荷が充電されることになる。この現象は一種のコンデンサ(キャパシタ)であり、実際にある種のコンデンサ(電気二重層コンデンサキャパシタ))として販売されている。

電気二重層は、電極近傍でのイオンの挙動に大きな影響を与えるため、電気化学などの分野で重要な意味を持つ。
コロイド(ナノ粒子)と電解液の界面

電気二重層は身近な物質の中でも重要である。例えば、牛乳が安定に存在するのは、脂肪の液滴が電荷をもつために電気二重層で覆われ、バターになるのを防いでいる。他にも電気二重層は、血液、塗料、インク、セラミックやセメントのスラリーなど、ほとんどすべての不均質な流体に存在する。
(界面)二重層の発展.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この項目「電気二重層」は途中まで翻訳されたものです。(原文:版番67446073
翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2018年3月)

ヘルムホルツSimplified illustration of the potential development in the area and in the further course of a Helmholtz double layer.

電気伝導体を固体もしくは液体のイオン伝導体(電解質)と接触させると、2つのに共通の境界(界面)が現れる。ヘルマン・フォン・ヘルムホルツ[1]は電解液に浸した荷電した電極が電荷の共イオンをはじき、表面の対イオンをひきつけることに初めて気づいた。電極と電解質の間の界面には電気極性の反対の2つの層が形成される。1853年、彼は電気二重層(DL)が本質的には分子誘電体であり、電荷を静電的に蓄えることを示した[2]。電解質の分解電圧以下では、蓄えられた電荷は印加される電圧に線形依存する。

この初期のモデルは電荷密度に依存せず、電解質溶媒比誘電率や二重層の厚さに依存する一定の微分容量を予測した[3][4][5]

このモデルは界面を記述するのに良い基礎を持つが、溶液中のイオンの拡散/混合、表面への吸着の可能性、溶媒双極子モーメントと電極の間の相互作用などの重要な要素を考慮していない。
グイ-チャップマン

1910年にルイ・ジョルジュ・グイが、1913年にデイビッド・チャップマンが静電容量は一定ではなく、印加された電位とイオン濃度に依存することを観察した。「グイ-チャップマンモデル」は二重層の拡散モデルを導入することで大きく進歩した。このモデルでは、金属表面からの距離の関数としてのイオンの電荷分布はマクスウェル-ボルツマン統計を適用することで可能になる。したがって電位は流体バルクの表面から指数関数的に減少する[3][6]
シュテルン


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:26 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef