電子ペーパ
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、電子ペーパーについて説明しています。デジタルペンで使用するパターン紙については「デジタルペーパー」をご覧ください。
iLiad

電子ペーパー(でんしペーパー)とは、の長所とされる視認性や携帯性を保った表示媒体のうち、表示内容を電気的に書き換えられるものをいう。Eインクまたは電子インクと呼ばれることもあるが、本来は一般名詞ではなく米Eインク社の商標である。

1970年代に米国ゼロックス社のパロアルト研究所に所属していたニック・シェリドンがGyriconと呼ばれる最初の電子ペーパーを開発した[注 1]。Gyriconの構造は、半球を白、別の半球を黒に塗り分けた微小な球をディスプレイに多数埋め込んだものである。球の一部は静電気を帯びており、電界によって球を回転させることで白地に黒い文字を浮かび上がらせられ、数千回の書き換えにも耐えた。

2000年代後半から電子ペーパーを利用した製品が一般的に販売されるまでに至り、今後は低価格化が普及の鍵とされる。
特徴
低消費電力
表示中に電力を消費しない、又は極小で済む。書き換え時の消費電力も非常に少ない。
応答速度
電気泳動方式では非常に遅く動画用途には向かなかったが、電子粉流体では液晶よりも高速になっている。
高い視認性
紙と同じように反射光を利用して表示を行うため、視野角が広く直射日光に当たっても見易く、目に対する負担が少ない。暗所では別に照明が必要になる。
薄くフレキシブル
紙のように薄く作ることができる。表示基板にプラスチック・フィルムを使えば曲げても品質を損なわずに表示できるが、製品としては未発売。
種類

マイクロカプセル方式 - Gyriconと同じ方式

電子粉流体方式

液晶方式(RLCD) - 異なる波長の光を選択的に反射するコレステリック液晶層を使用して多色カラー表示を行う。2008年末現在、富士通、旭ガラス、富士ゼロックスが開発中。ほか、シャープ[1]なども開発中。

エレクトロウェッティング方式 - Electrowetting

電気泳動方式

化学変化方式 - 有機物や無機物の酸化還元反応を利用したもの。2008年末現在、船井電機が開発中[2]

電気泳動方式電気泳動方式の構造模式図
1.表面層 2.透明電極(ITO) 3.マイクロカプセル 4.正に帯電した白色顔料 5.負に帯電した黒色顔料 6.透明分散媒(オイル) 7.下部電極 8.支持層 9.外光 10.白色 11.黒色

電子ペーパーの代表的な表示技術に電気泳動方式がある。この方式は米E Ink社が開発したもので、流体を収めたマイクロカプセル中で白色と黒色の粒子を電界によって移動させることで白黒の表示を行なうものである。粒子移動型などとも呼ばれる。同様の技術は米 SiPix Imaging社も開発しており、類似の技術では、流体ではなく空中で白色と黒色の粒子を電界によって移動させるブリヂストン社の方式もある[2]
構造

直径40μm程度の透明なマイクロカプセル中に正と負に帯電した白色と黒色の顔料粒子がオイルと共に収められ、カプセルは1層のみ薄く2枚の狭い電極板の間に隙間なく並べられる。表示面となる電極の片側はITOのような透明電極で作られ、反対側の電極は必要な表示解像度の大きさの微小な矩形電極で構成される。

外部の制御回路からの電圧印加によって2枚の電極間に電界が生じ、正と負に帯電した白色と黒色の顔料粒子がオイル中を泳動して、いずれか電圧によって選ばれた色の顔料粒子がカプセルの表示面側に集まることで、白黒の表示を行い、微小な電極によって作られる各画素ごとに白黒の表示が選ばれる。電圧を切っても顔料粒子は簡単には動かないため、印刷物のように読み取れる[2]
特性

他の多くの電子ペーパー同様に、画像保持の為の電気は全く必要とせず、画像の書き換え時にも少しの消費電力で済む。

2013年現在の技術でも、電気泳動方式では、新聞紙やレーザープリンターによって印刷出力されたコピー紙と比べても遜色ない表示品質が得られる。

表示特性の比較表示媒体反射率コントラスト
電子ペーパー
(電気泳動方式)44%15対1
新聞紙40?65%7対1
コピー用紙80%20対1

2008年末で単純な白黒画像の更新時間は0.3-0.7秒である。2008年春にセイコーエプソンが電気泳動方式専用の駆動ICを開発し、最大では16個の領域に対して同時に書き換えられるので、応答性の良い電子ペーパーが実現出来る。

広い視野角を持ち、白黒の活字印刷のようなコントラストの強いモノクローム表示には最適であるが、白黒の中間調では一度白黒を反転させて以前の残像を消す必要から画像更新時間は単純な白黒画像に比べて2倍以上の時間が掛かりスクロール表示には向かない。中間調はパルス幅変調などで実現される。

カラー化は液晶パネルと同様に、画素ごとに色の異なるカラーフィルタを重ねることで実現されるが、白黒では反射光を利用しているために40%だった白色の反射率が、赤・緑・青の3つのカラーフィルタからの反射光の合成によって白色を作るために13%程度にまで落ちて、暗い画面になるのが欠点である。

電子ペーパーは液晶ディスプレイや有機ELほど水蒸気の侵入に対して敏感ではないことや、反射型なので背面は不透明で良い点、元々視野角が広い事、バックライトが必要無い事、などの理由により、こういった薄型表示パネルの中では最も早い時期に、実用的な曲げても使えるディスプレイを実現出来ると考えられている。ただ、2009年1月現在、どの方式のものも商品化までには至っていない。

また、将来量産されれば、同じ大きさの液晶ディスプレイと比べても、偏光板がいらない分だけ低コストで製造できると考えられる[2]
エレクトロデポジション方式

高い反射率を示す白色の二酸化チタン(TiO2)粒子を分散させたゲル状の固体電解質ヨウ化銀を溶解させて、電極間に電圧を印加すると、電気化学反応によって固体電解質の中に溶解していたイオンが表示側の透明電極上に析出し、黒色表示となり、消去時には逆の電位を印加して析出した銀を固体電解質に溶出させれば白色のゲル状固体電解質によって白色表示に戻る[3]
可動フィルム方式

かわら屋根状に重ねられた白インクが塗られたフィルムの隙間から黒インクが塗られたフィルムを出し入れする方法で、黒インクが塗られたフィルムの代わりにシアン、マゼンタ、イエローのフィルムを隙間から出し入れすることで減法混色方式によってカラー表示もできる[3]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:40 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef