電圧ダブラ
[Wikipedia|▼Menu]

電圧ダブラ(でんあつダブラ、英語:voltage doubler)は、入力電圧によりコンデンサ(キャパシタ)を充電し、これらの電荷を切り替えることで(理想的な場合に)入力電圧の2倍の電圧を出力する電子回路。倍電圧器などとも呼ばれる。

最も単純なものは、AC電圧を入力電圧として受け取り、2倍のDC電圧を出力する整流器である。スイッチング素子は単純なダイオードであり、入力の交流電圧だけで状態を切り替えるように駆動される。DCからDCへの電圧ダブラはこの方法で切り替えることができず、切り替えを制御するための駆動回路が必要である。また、単純なACからDCの場合のようにスイッチ間の電圧によるのではなく、トランジスタのように直接制御できるスイッチング素子を必要とすることもよくある。

電圧ダブラは、電圧マルチプライヤ(英語版)(電圧増倍器)の一種である。全てではないが多くの電圧ダブラは高次のマルチプライヤの1つのステージと見なすことができる。この場合、同一のステージをカスケード接続することでより大きな電圧増倍を実現することができる。
電圧ダブラ整流器
ヴィラール回路図1 ヴィラール回路

ポール・ヴィラールにより考案されたヴィラール回路[p 1]は、単純にコンデンサダイオードで構成される。単純さという大きなメリットがあるが、出力のリップル特性は非常に劣る。本質上、この回路はダイオードクランプ回路である。コンデンサは負の半サイクルでピークAC電圧(Vpk)まで充電される。出力は入力AC波形とコンデンサの定常DCの重ね合わせである。この回路の効果は、波形のDC値をシフトすることである。AC波形の負のピークはダイオードにより0 V(実際にはダイオードの小さい順バイアス電圧である?VF)に「クランプ」されるため、出力波形の正のピークは2Vpkである。ピーク間のリップルは大きく2Vpkであり、回路をより精巧なものの1つに変えない限り平滑化することはできない[1]。これは電子レンジのマグネトロンに負の高電圧を供給するために使用される回路(逆にしたダイオードとともに)である。
グライナッヘル回路図2 グライナッヘル回路

グライナッヘル電圧ダブラは、ヴィラール回路に安価に部品を追加したもので、ヴィラール回路より大幅な改善が見られる。リップルは大幅に減少し、開回路負荷条件では通常0であるが、電流が流れているときは使用する負荷の抵抗とコンデンサの値により異なる。この回路は本質的にピーク検出器または包絡線検波器ステージとヴィラールセルのステージをたどることで機能する。ピーク検出器セルには出力のピーク電圧を維持しながらほとんどのリップルを除く効果がある。グライナッヘル回路は一般的に半波電圧ダブラとしても知られている[2]図3 電圧クアドルプラ(四倍電圧器)? 2つの反対の極性のグライナッヘルセル

この回路は最初1913年にハインリヒ・グライナッヘル(英語版)により発明され(1914年に発表[p 2])、彼が新たに発明したイオノメータに必要な200?300 Vを供給した(当時チューリッヒの発電所から供給される110 V ACでは不十分であったため)[3]。のちの1920年にこの考えを増倍器のカスケードに拡張した[p 3][4][p 4]。グライナッヘルセルのカスケードは、しばしば不正確にヴィラールカスケードと呼ばれる。これは1932年に独立して回路を発見したジョン・コッククロフトアーネスト・ウォルトンにより作られた加速器にちなんでコッククロフト・ウォルトン電圧増倍回路と呼ばれる[p 5][5]。このトポロジーの概念は、同じAC電源から駆動される反対の極性の2つのグライナッヘルセルを使用することで四倍電圧器に拡張することができる。出力は2つの個々の出力にわたり得られる。ブリッジ回路と同様に、この回路の入力と出力を同時に接地することは不可能である[6]。グライナッヘル回路はグライナッヘル結線とも呼ばれる。
デロン回路図4 ブリッジ(デロン)電圧ダブラ

デロン回路はブリッジトポロジーを利用して電圧を倍にする[p 6]。そのため、全波電圧ダブラとも呼ばれる[2]。この形の回路はかつてブラウン管のテレビで一般的に見られ、特別高圧(エクストラハイテンション)を供給するのに使用されていた。変圧器を使用して5 kVを超える電圧を生成することは国内設備の点で安全上の問題があり、いずれにしても経済的ではない。ただし白黒テレビには10 kVの特別高圧とさらにカラーセットが必要であった。電圧ダブラは主電源変圧器の特別高圧巻線の電圧を2倍にするのに使用されるか、ラインフライバックコイルの波形に適用された[7]

回路は2つの半波ピーク検出器で構成され、グライナッヘル回路のピーク検出器セルとまったく同じように機能する。2つのピーク検出器セルそれぞれは入力波形の反対の半サイクルで動作する。それらの出力は直列であるため、出力はピーク入力電圧の2倍になる。
スイッチトキャパシタ回路図5 充電されたコンデンサ(キャパシタ)を並列から直列に切り替えるだけのスイッチトキャパシタ電圧ダブラ

上記の単純なダイオードコンデンサ回路を使用して、電圧ダブラの前にチョッパ回路を配置することでDC電源の電圧を2倍にすることができる。実際、これによりDCをACに変換してから電圧ダブラに印加する[8]。スイッチングデバイスを外部のクロックから駆動することでより効率的な回路を構築することができ、チョッピングと電圧を倍にする機能を同時に実現することができる。このような回路はスイッチトキャパシタ回路として知られる。このアプローチは、集積回路がバッテリーが供給できるよりも高い電圧を供給する必要がある低電圧バッテリー駆動の用途で特に役に立つ。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:34 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef