雪氷
[Wikipedia|▼Menu]
雪氷圏とそのおもな構成要素の概観。 ⇒UN Environment Programme Global Outlook for Ice and Snowから引用。

雪氷圏(せっぴょうけん、: cryosphere)は、地球の固体のの層である。
構造

海氷、湖氷、河川氷、積雪、氷河氷冠氷床、そして(永久凍土を含む)凍土を含む。

英語はギリシア語で「寒冷」、「凍結」、「」を意味するκρ?ο?(kryos)と「球」を意味するσφα?ρα(sphaira)からできた[1]水圏と内容が幅広く重複する。雪氷圏は、地球表面のエネルギーや水分の流動、降水水文学、大気循環、大洋循環への影響を通じて生じる重要なつながりとフィードバックをもった地球の気候システムになくてはならない部分である。こうしたフィードバックの過程を通して、雪氷圏は地球の気候やそれに応じた気候モデルにおいて重要な役割を果たすIPCC第5次評価報告書のために設計されたこの分解能の高い画像は、世界中の雪氷圏の構成要素によって影響を受けている地域の範囲を示している。陸上では、連続永久凍土は暗いピンク色で、不連続永久凍土は明るいピンク色で示されている。北半球の陸の大部分を覆っている半透明の白いくもりは、2000年から2012年の間に少なくとも1日降雪を受けた地域を表す。この地域の南部の縁に沿って引かれた明るい緑色の線は雪に覆われる範囲が最も広い場合を表し、北アメリカやヨーロッパ、アジアをまたいで引かれた黒い線は50%の確率で雪に覆われる範囲の境界を表す。氷河は山岳地域や南北高緯度地域に小さな金色の点で示されている。海上では、棚氷は南極周辺に見られ、海氷がそれを囲んでいる。海氷はまた北極でも見られる。北極と南極ともに、海氷の覆う範囲の30年間の平均は黄色の輪郭線で示されている。さらに、グリーンランドと南極の氷床ははっきりと見てとることができる。

(固体の状態にある水)は、地球の表面には主に、積雪、河川淡水氷、海氷、氷河、氷床、凍土、そして永久凍土[注 1] として存在する。雪氷圏を構成するこれらの個々のサブシステムごとに、水の滞留時間は大きく異なる。基本的に積雪や淡水氷は季節的なものであり、北極中央部にある氷をのぞいた海氷の大部分は、季節的であるか、年を越す場合でもわずか数年しかもたない。ところが、氷河氷床、凍土中の氷の内部にある所定の水分子は1?10万年あるいはそれ以上の長い間凍ったままのこともあり、東南極氷床の深部に位置する氷は凍ってから100万年に達するものもある。

世界中の氷の体積の大部分は南極大陸、とりわけ東南極氷床が占める。しかし面積範囲に関していえば、北半球の冬季の雪と氷の占める広さは最大であり、1月では平均して半球の表面全体の23%を占める。その広い面積範囲と、と氷それぞれの固有の物理的特性と関連した重要な季節的役割は、雪や氷の覆う広さや厚さ、物理的特性(光や熱に関する特性)を観察しモデル化することが気候学の調査において特に重要だということのしるしである。

地表と大気の間のエネルギー交換を調節する、雪と氷の根本的な物理的性質がいくつかある。最も大切な性質には表面での反射率(反射能)、熱を伝える能力(熱拡散率)、状態変化を起こす能力(潜熱)がある。こうした物理的性質は、表面の粗さや放射率誘電体の性質と合わせて、雪や氷を宇宙から観察するうえで重要性を帯びている。例えば、表面の粗さはしばしばレーダー後方散乱の強さを決定づける主要な要素である[2]。また、結晶構造や密度、長さ、液体水含有量といった物理的性質は、熱と水の移動やマイクロ波エネルギーの散乱に影響を与える重要な要素である。

入射する太陽光に対する表面反射率は表面のエネルギー収支にとって重要である。これは入射する太陽光に対する反射光の割合で、通常は反射能と呼ばれる。気候学者は、電磁スペクトルのうち太陽エネルギー入射量の主要部分と一致する波長範囲(300?3500 nm)について積分した反射能に、主として興味を持っている。一般に融解していない雪に覆われた表面の反射能の値は、森の場合を除くと高い(80?90%まで)。雪と氷の他の地表面状態よりも高い反射能は高緯度地域での春と秋の表面反射率に急激な変化を引き起こすが、この増加のうち全般的な気候にとって重要な部分は空間的かつ時間的に雲量による変調を受ける。(地球の反射能は主として雲量によって決まり、冬に高緯度地域が受ける日射量による寄与はわずかである。)夏と秋の季節は北極海が曇天である割合が高い時期であるため、海氷域面積の大きな季節的変化と関連している反射能フィードバックは非常に減少する。グロイスマンら(1994a)は、積雪地域に入射する太陽光が最大の春季(4月?5月)に積雪が地球放射照度に大きな影響を与えることを観察した[3]

雪氷圏の構成要素のの特性はまた重要な気候的意義をもつ。雪と氷の熱拡散率空気のそれよりも非常に小さい。熱拡散率とは温度波が物質を透過することのできる速度の指標である。雪と氷は空気よりも熱の拡散が何桁も値が異なるほど効率的でないのである。よって、積雪は地表を、海氷はその下にある海洋を覆って、熱や水分の流動に関する表面と大気の境界面を分断する。水面からの水分の流動は厚さの薄い氷によってでさえ断ち切られてしまう一方で、薄い氷を介した熱の流動は存在し、この現象は氷が30?40cmを超えるほどの厚さになるまで続く。しかしながら、氷の上部に少量の雪があると、それだけで驚くべきほど熱の流動が抑えられ氷の成長速度が遅くなる。この雪の遮断効果はまた、水循環と重要なつながりがある。ゆえに、永久凍土のない地域では雪の遮断効果が非常に大きいので、本当に地表に近い地面のみが凍結して深水域の排水は妨げられない[4]

雪と氷はに大量のエネルギー損失から地表を遮るように作用するが、氷が融けるのに必要なエネルギー量が大きい(融解の潜熱は0 ℃で3.34 x 105 J/kg)ため、春や夏には、地表が温まるのを遅くする作用がある。しかし、広範囲に雪や氷が存在する地域では、大気の静的安定度が強いので、即時の冷却効果は比較的浅い層に限られ、関連のある大気の偏差は通常短期的で規模は小さめである[5]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef