集合論
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事には参考文献外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。脚注を導入して、記事の信頼性向上にご協力ください。(2023年3月)
集合論

集合論(しゅうごうろん、英語: set theory)は、集合とよばれる数学的対象をあつかう数学理論である。

通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。

集合論における基本的な操作には、あたえられた集合のべき集合直積集合をとる、などがある。また二つの集合の元同士の関係を通じて定義される順序関係写像などの概念が集合の分類に重要な役割を果たす。集合論では、二つの集合の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 O n {\displaystyle \mathrm {On} } もまた整列順序付けられている。集合の濃度を 。 A 。 = min { α ∈ O n ∣ ∃ R ( ( A , R ) ≅ ( α , ∈ ) ) } {\displaystyle |A|=\min\{\alpha \in \mathrm {On} \mid \exists R((A,R)\cong (\alpha ,\in ))\}} と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はスコットのトリックを参照。
素朴集合論と公理的集合論

集合論の初期の段階では、集合は「普通の意味での」ものの集まりとして導入され考察された。この見方を現在では素朴集合論(そぼくしゅうごうろん)という。これは集合を理解する上で最もわかりやすい考え方であるが、「普通の意味での」ものの集まりを以下の内包公理で定式化すると、パラドックスが現れてしまう。

任意の性質 P ( x ) {\displaystyle P(x)} に対して、 P ( x ) {\displaystyle P(x)} を満たす元 x {\displaystyle x} の集合 { x 。 P ( x ) } {\displaystyle \{x|P(x)\}} が存在する

パラドックスの有名なものとしては、以下のものがあげられる。
カントールのパラドックス
全ての集合を含む集合(たとえばX = {a 。a = a})を考えると、そのべき集合はカントールの定理によってより大きな濃度を持つはずだが、一方もとの集合に含まれるのだから、濃度は大きくないはずである。
ブラリ=フォルティのパラドックス
全ての順序数からなる集合 O はそれ自体が順序数であり、O ∈ O から O < O となって矛盾
ラッセルのパラドックス


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:72 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef