銑鋼一貫製鉄所
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2017年10月)

製鉄所(せいてつじょ・せいてつしょ)とは、製鉄を行い鉄鋼製品を作る一連の設備がまとまって存在する工場のことである。

本稿では、その中でも日本の鉄鋼業の主流である、鉄鉱石からを取り出すところから最終製品の製造までを一つの敷地内で行う(間接製鋼法による)銑鋼一貫製鉄所を取り上げる。

日本における事実上の銑鋼一貫製鉄所は、日本製鉄7(室蘭鹿島・君津名古屋和歌山八幡・大分)、JFEスチール6(千葉・京浜倉敷・福山知多・仙台)、神戸製鋼所1(神戸[1]加古川)の14か所である(2019年現在)。

日本初の銑鋼一貫製鉄所としては一般的に北九州官営八幡製鐵所(1901年(明治34年)操業開始)が挙げられるが、操業当初には生産が不安定で、開始の翌年から2年間稼動が停止(1904年まで)されている。一方、民間では岩手県釜石鉱山田中製鉄所(1887年(明治20年)創業)が1903年(明治36年)より銑鋼一貫製鉄所となって稼動しているので、こちらの方が時期的に早い。海から見る神戸製鋼所加古川製鉄所欧州最大級の規模と言われるアゾフスタリ製鉄所ウクライナ)には、ソ連時代に建設された地下6階の核攻撃などを想定した要塞が備えられている。
製鉄所の立地

製鉄業は広大な敷地に加え、多様な設備・大量の用役(エネルギーなど)が不可欠な、典型的な装置産業である。特に、@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}現在[いつ?]主流である銑鋼一貫製鉄所ではその傾向が強い。このため、製鉄所の建設にあたってその立地条件は製鉄所の命運を左右しかねない、もっとも重要な要素の一つである。

製鉄所に必要とされる立地条件は、一般に次のような項目と考えられている。
巨大な設備を支えることができる、安定して強固な地盤であること。

豊富な水利が確保できること。

原料や製品の入出荷に対応できる水深の深い良港がある、あるいは建築できること。

できるだけ風水害が少なく、安定した気候であること。

製鉄所の建設

日本初の近代製鉄所である釜石製鐵所(1880年(明治13年)操業開始)や、同じく初の銑鋼一貫製鉄所である八幡製鐵所(1901年(明治34年)操業開始)が共に官営で建設されたことからも解るように、国際競争力を持つ大規模な製鉄所を新たに建設するのは、国家的大事業であった。立地選定から始まり、土地の造成、各種設備の建設、用役の確保と供給手段の確立、物流手段の確立、防災環境対策、情報処理通信インフラストラクチャーの整備、そして従業員の居住地など、およそ都市をまるごと一つ作り上げるような作業が必要となる。

高炉と転炉のペアを新たに1基作るだけでも1,000億円単位の資金と数年の歳月が必要である。このため、日本国内で現在の[いつの?]高炉・転炉を用いた製鉄所を新たに建造することは不可能に近い。一方で、鉄鋼の消費量が急速に拡大しているアジア各国では、半ば国策として大規模な製鉄所の建設が相次いでいる。

このように、製鉄所を建設する事は経済、環境、社会福祉、政治、情報などのあらゆる場面において膨大な影響を及ぼすことから、「鉄は国家なり」とも言われるようになっている。
製鉄所の立地条件

製鉄所の立地は、鉄鉱石石炭の産地周辺に立地する「原料立地型」のケースと、輸入原料の搬入に便利な港湾に立地する「港湾立地型」(海岸のほか、河岸や湖岸のこともある)に二分される。前者は中華人民共和国ロシアアメリカ合衆国ドイツイギリス(ただし、石炭資源の涸渇などによって原料立地の優位性は失われていることも多い)などに見られるものであり、後者は日本、大韓民国ブラジルオランダなどで見られる。ただし日本でも、上記の官営八幡製鐵所や釜石製鐵所などは原料立地型から始まっている(それぞれ石炭、鉄鉱石)。
製鉄所における製造フロー

製鋼プロセスの例
鉄鉱石

高炉:鉄鉱石から銑鉄を取り出す

溶銑予備処理:不純物を酸化させる

転炉:不純物を取り除き鉄鋼にする

二次精錬:成分を微調整する

連続鋳造:一定の形の半製品をつくる

圧延:半製品を加工して所定の形状の製品にする

出荷

ここでは、銑鋼一貫製鉄所における鉄鋼製品の製造フローを概観する。ただし実際には、各製鉄所によって様々な創意工夫が行われている。
原料受け入れ

鉄鋼を作る原料は、主に鉄鉱石石炭石灰石の3つである。日本の場合、石灰石はほとんど自給できているが、鉄鉱石と石炭は事実上全量を輸入に頼っている。これらは、いずれも巨大なバラ積み船で製鉄所の原料岸壁まで輸送されてくる。製鉄所では、積荷の原料をアンローダーで荷揚げし、所定の原料ヤードに移送・山積みする。原料ヤードには通常、約30?60日分の原料が在庫される。
原料処理

現在[いつ?]産出される鉄鉱石の多くは粉鉱のため、そのまま高炉に入れると高炉が目詰まりを起こしてしまう。そのため、還元促進剤の役目を果たす石灰石と共に焼き固める(焼結)。また、石炭も多くは粉状であり、強度と燃焼エネルギーが不足しているので、コークス炉で蒸し焼きにしてコークスにすることで、適度な強度と高い燃焼エネルギーを確保する。
製銑高炉の例(スペインセスタオ

鉄鉱石から鉄を取り出す工程のことを製銑(せいせん:製鉄ではない。銑鉄(せんてつ)をつくること)と呼ぶ。日本では高炉と呼ばれる、製鉄所のシンボルとも言える巨大な溶鉱炉を用いている。大型高炉の場合、最上部までの高さは100メートルを超え、現在では[いつ?]内部容積が5000立方メートルを超える超大型の高炉も珍しくない。処理された原料は、ベルトコンベアで高炉上部に輸送され、そこから順次高炉の中に装入される。高炉の壁面下部からは1,000を超える熱風が大量に供給されている。炉の内部では高温の空気中の酸素とコークス中の炭素が反応して、2,000℃近い温度になる。

この中で、鉄鉱石に含まれる酸素とコークス中の炭素が結合して一酸化炭素となり、還元された鉄は溶解した状態で高炉下部へと流れ落ちてゆく。また、鉄鉱石中の岩石成分は石灰石と反応してスラグ(鉱さい)となって流れ落ちる。高炉下部には溶解した鉄とスラグが雨のように降り注いでいる。

頃合いを見計らって高炉下部に穴を開けると、溶けた鉄とスラグが流れ出してくる。スラグは比重が鉄より軽いので、この時点で容易に分離可能。こうして取り出した鉄は炭素を2?3パーセント含んでおり、銑鉄 (pig iron) [注釈 1]と呼ばれる。多くの製鉄所では、この銑鉄を混銑車(トーピードカー)と呼ぶ特別な形の貨車に流し入れ、液体(溶銑)のまま次の製鋼工場に輸送している。なお、途中で溶銑予備処理(事前の簡単な成分調整)を行うケースが多い。
製鋼

高炉で取り出した銑鉄はそのままでは硬くてもろく、圧延加工をすることが困難である。銑鉄から炭素分を除去し、必要に応じて他の合金元素を混ぜることで、粘り強さを持つ (steel) を製造する工程を製鋼と呼ぶ。鉄鋼の基本的な性質を決める重要な工程であり、日本の製鋼技術は世界のトップクラスを走る。

混銑車で運ばれて来た銑鉄は、いったん取鍋(とりべ・とりなべ)に移されたあと、内部に耐火煉瓦を敷き詰めた転炉に装入される。その後転炉内部には酸素が吹き込まれる。その酸素と銑鉄中の炭素が結合して一酸化炭素となり、回収される。また、必要に応じて、ニッケルクロム等の合金元素が投入され、対流によって均一な状態になるまで攪拌される。転炉内部の鉄が所定の成分になると作業は終了し、転炉は最初とは反対側に回転して、別の取鍋に完成した溶けた鋼(溶鋼)を排出する。高品位の鋼を作る場合、溶鋼を取鍋に入れたまま特別な装置にかけ、鋼中の不純物をさらに低減させることも多い。

転炉が1回の工程で製造する鋼は約200トン前後。製鉄所の製造ロットの基本はここで決まっている。なお、転炉では成分調整が難しい場合や、極小ロット品の製造には、電気炉で製鋼することもあるが、転炉に比べて著しくコストが高い。転炉・電気炉を通してできた鉄を粗鋼(Crude iron)と呼び[2]、その生産量が製鉄所または鉄鋼会社の大きさの指標として使われる(例えば、粗鋼生産ランキング粗鋼生産量の国別ランキングなど)。この工程では、使用済みで回収されたスクラップ鉄も、大きな磁石で釣り上げて(鉄以外の金属は磁石に反応しない)、少量または多量に炉へ投入されるからである。
鋳造

取鍋で運ばれてきた溶鋼は、加工しやすいように一定の形に鋳固められるが、その工程を鋳造と呼ぶ。日本では、上下が開口した鋳型の上部から溶鋼を注入し、あたかもところてんのように連続して鋼を鋳固めてゆく連続鋳造という方式の採用が進んでいる。連続鋳造は極めて高度な技術管理が必要であり、鉄鋼各社は生産性と品質レベルの向上にしのぎを削っていたが進歩はほぼ終了し、連続鋳造が適切でない鋼材については昔ながらのインゴット鋳造も併存している。連続鋳造は成分の制約を大きく受け、固液共存温度幅が小さく、デルタフェライト(δ鉄)が出ない、熱間脆化元素を含まないといった狭い条件においてのみ適用可能な技術であるのに対し、インゴットを鋳造する方法ではその縛りを受けないためと、生産量が小さくなる特殊鋼の場合では、多量の溶けた鋼を要する連続鋳造では全く刃が立たないためである。

鋳造されたものは、その形状によりおおむね下記のように分類される。これらはいずれも半製品として次の工程の材料に用いられる。
スラブ
巨大なかまぼこ板のような形状。主に厚板薄板に加工。
ビレット
巨大な円柱または角柱形状。継目無鋼管や小サイズの形鋼棒鋼線材などに加工する。
ブルーム
スラブよりも小断面・厚肉で、羊羹のような形状。各種形鋼や棒鋼・線材、また上記ビレットなどに加工。
ビームブランク
ブルームの中でも、特にH字型に近い形に鋳造されたもの。H形鋼専用の素材。
圧延

鋳造で製造された半製品に力を加えて「鍛える」ことで、所定の形状の製品に加工する作業を圧延と呼ぶ。ハンマーのような物体で叩きながら鍛えることを鍛造と呼ぶが、圧延も基本的には同じことを行う。圧延は多くの場合、ハンマーの役目をロールが担っている。

圧延には大きく分けて、材料が赤くなるほど熱を加え、再結晶温度以上で圧延する熱間圧延(熱延)と、材料を常温のままで、もしくは多少の熱を加えただけで圧延する冷間圧延(冷延)の2種類がある。

鋳造で作られた中間製品は、まず熱間圧延で加工され、その後必要に応じて冷間圧延にも回される。また、工程中に熱処理を行うことで、製品の強度や性質を細かく制御する技術が進んでいる。圧延の結果、厚板薄板形鋼鋼管などの各種鉄鋼製品が完成する。これらは必要に応じて表面処理(めっき・塗装・研磨など)が行われたあと、検査を経て、出荷可能な製品として倉庫に移送される。
出荷

倉庫に保管された製品は、需要家からの要請などに応じて所定の場所まで輸送される。向け先が比較的近い場合や遠くても緊急を要する場合には、トレーラーによって陸送されるが、多くの場合は製鉄所の出荷岸壁から内航船でいったん物流拠点に輸送され、そこから小口陸送されている。製品の出荷に鉄道を用いることは、現在では[いつ?]まれである。輸出は基本的に全て海上輸送となっているが、緊急時には主に流通業者の費用負担で航空機による輸送が行われることもある。
製鉄所と環境

年間数百万tの鉄鋼製品を生産する製鉄所は、大量の物資や用役を消費しており、環境負荷の発生源ともなっている。
用役と再利用

鉄鋼製品を1トン作るのに水が100トン必要であると言われるほど、鉄鋼業は設備冷却・加工品の冷却・洗浄などに大量のを必要とする。こうした水は工業用水から確保しているが、使い終わった水は徹底的に回収・処理することで、極力新水の使用を削減している。現在の[いつの?]日本の製鉄所における水の再利用率は90パーセントを大きく超えており、熱で蒸発した以外はほぼ全量再利用されている。

製鉄業には各所で加熱工程があり、膨大な熱量が必要となる。こうした熱源には、コークス炉(コークス炉ガス)・高炉(高炉ガス)・転炉(転炉ガス)などで発生する一酸化炭素を主成分とする可燃性ガスを回収して用いている。製鉄所内にはこれらのガスを貯蔵するタンクや配管がいたる所に見られる。特に高炉で発生するガスは薪と同程度のエネルギー量しか無いものの[3]、多くの製鉄所では場内で回収されるガスで全ての熱源を賄えるばかりか、発生した余剰ガスを都市ガス会社に販売している所もあったが、有毒な一酸化炭素が含まれているなどの理由で現在では[いつ?]都市ガスの天然ガスなどへの転換政策が進んだことから行われていない。また、加熱時に発生した大量の熱は、仕事が終わった後も回収され、予熱・乾燥などに用いられている。また、でき上がったばかりのスラブなどの半製品はかなりの高温であるが、それをできるだけ冷却させずに熱間圧延することでエネルギー消費を抑制しようという動きも盛んである。

製鉄所の設備を稼働させるのに電力は不可欠である。これらの電力は電力会社から購入しているが、製鉄所内では自家発電も盛んであり、電力会社と共同で発電事業会社を運営し発生した電力を折半するケースも見られる。上述の場内発生ガスを利用した発電所の他に、高炉で発生した高温高圧のガスでタービンを回すことにより発電する炉頂圧発電といったエネルギー回収設備が実用化されている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:60 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef