量子鍵配送
[Wikipedia|▼Menu]

量子鍵配送(Quantum Key Distribution, QKD)は、量子力学の性質を利用した暗号が実装された安全な通信方式である。量子鍵配送では、通信を行う二者間のセキュア通信を保証するためにランダムに生成された秘密鍵を共有し、その鍵を使って情報を暗号化・復号する。量子鍵配送は、しばしば量子暗号と呼称されるが、より正確には量子暗号技術の一手法である。また、「量子鍵配布」とも呼ばれる。

量子鍵配送の重要な特徴として、通信を行う二者が、その通信に用いられる鍵の情報を取得しようとする第三者(盗聴者)の存在を検知できる点がある。この性質は、一般に量子系は観測によって必ずかく乱されるという量子力学の基本原理にもとづいている。つまり、第三者は鍵を傍受するために何らかの方法で鍵の情報を観測する必要があるため、その観測行為が検知可能な異常をまねくのである。より具体的には、量子重ね合わせ量子もつれを利用して情報を量子状態に乗せて伝達することで、盗聴を検知できる通信システムを実現できる。傍受のレベルが一定のしきい値を下回った場合には、秘匿性が保証された(つまり盗聴者に知られていない)鍵を生成できるが、そうでない場合には傍受が行われたものとして鍵生成を行わずに通信を終了する。

量子鍵配送では、上述のとおり量子力学の原理によって暗号の安全性が保証されている。それに対して、従来の公開鍵暗号方式ではある種の数学関数の逆関数の計算の困難さが安全性の根拠になっているが、使用する一方向性関数の逆関数の計算の複雑性が数学的に証明されていない。量子鍵配送は、情報理論によって証明可能な安全性と前方秘匿性を備えた通信方式である。

量子鍵配送の主要な欠点として、通常、認証済みの古典的な通信路上に実装されている点がある。現代の暗号技術においては、認証済みの古典的な通信路があることは、十分な長さの共通鍵や十分な安全性を持つ公開鍵を交換済みであることを意味している。その場合には、実用上、Advanced Encryption Standard (AES)ガロアカウンターモード (Galois/Counter Mode, GCM)によっても十分安全な通信を実現できる。この点から見ると、量子鍵配送は、ストリーム暗号と比較して数倍コストがかかる技術である。

量子鍵配送は、鍵の生成・配送にのみ使われる技術で、実際のデータ転送には使われない。量子鍵配送によって交換された暗号鍵は、任意の暗号化アルゴリズムとあわせて使用することができ、暗号化されたデータは標準的な通信路を使って送受信できる。量子鍵配送に最も適した暗号化アルゴリズムとしてワンタイムパッドがあり、これはランダムな秘密鍵を用いた場合に証明可能安全性を持つ暗号方式として知られている[1]。現実の世界では、Advanced Encryption Standard (AES)アルゴリズムのような共通鍵アルゴリズムを使用した暗号とあわせて使用する場合もある。
量子鍵交換[ソースを編集]

量子通信には量子状態にある情報や従来のビットに替わる量子ビットの符号化が含まれる。通常は光子が量子状態をあらわすのに用いられ、量子鍵配送はこの量子状態のもつ性質を活用することによって安全性を保証する試みである。量子鍵配送にはいくつか手法があり、量子状態のどの性質を利用するかによって二つのカテゴリーに分けられる。
プロトコルの準備と観測
古典物理学と違い、「観測」は量子力学において不可分な領域である。通常、未知の量子状態を観測すると、その量子状態が変わってしまう。これは量子の不確定性と呼ばれ、不確定性原理や情報撹乱定理、量子複製不可能定理などの根底を成している。この不確定性を利用することで通信における盗聴者を探知したり(盗聴者は通信を観測するため)、さらには傍受された情報量の算出なども可能である。
エンタングルメントを用いたプロトコル
二つ以上の独立な物体の量子状態は、お互いに結び付けられることによって独立した状態から一つの結合状態となることが出来る。これは量子もつれ(エンタングルメント)と呼ばれ、例えば二つの物体が量子もつれ状態にあるとき、一方の物体を観測することが他方にも影響を及ぼす。仮に量子もつれ状態にある二つの物体がそれぞれ二者のあいだで共有されているとき、第三者がどちらかの物体(状態)を観測したとすると、全体の系も変わってしまうと同時に盗聴者の存在や傍受された情報量などが明らかになる。

さらにこれら二つの手法は、離散変数暗号化、連続変数暗号化、分散位相参照暗号化のそれぞれ三つのプロトコルへ分類することが出来る。離散変数暗号化プロトコルは最初に発明されたもので最も実装されているのもこのプロトコルである。それ以外の二つのプロトコルは実験的な検証段階である。以下に示す二つのプロトコルはどちらも離散変数型の暗号化プロトコルである。
BB84 protocol: Charles H. Bennett and Gilles Brassard (1984)[ソースを編集]

このプロトコルは光子の偏光状態を情報伝達に使用するもので、発明者と発表年から取ってBB84と呼ばれる。しかしながら、二つのペアとなる共役状態のものなら何でも代用できる。また、光ファイバーをつかった多くのBB84実装は符号化した位相状態を使用している。送信者(伝統的にはAlice)と受信者(Bob)は量子通信チャンネルと呼ばれる量子状態を伝送する経路で結ばれている。光子の場合は通常光ファイバーか、もしくは単に真空を媒体とする。更に量子通信チャンネルとは別に、従来の伝送経路である無線やインターネットを通して通信する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:39 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef