量子統計力学
[Wikipedia|▼Menu]

量子統計力学(りょうしとうけいりきがく、 : Quantum statistical mechanics)とは、量子力学的なを扱う統計力学の手法。統計力学の基礎づけは量子力学に拠っているため、広義には統計力学一般を意味し、狭義には古典近似を用いないモデルを指す。対義語は古典統計力学。
古典統計力学と量子統計力学

量子統計力学に対し、古典力学に従う統計力学を特に古典統計力学という。例えば、常温付近での不活性気体の統計力学は、最も簡単には分子相互作用のない理想気体モデルがあり、相互作用のあるモデルでは、二体間ポテンシャルを剛体球ポテンシャル(英語版)にカッツ・ポテンシャル(英語版)を加えたものや、レナード-ジョーンズ・ポテンシャルで近似するモデルがあるが、いずれにせよ古典近似による古典統計力学でよい。このことは、気体分子の統計ボルツマン分布に従い、その速度分布がマクスウェル-ボルツマン分布になることによって保証される。ほとんどすべての場合、気体や液体は、原子間ないし分子間相互作用を与えてしまえば、そのポテンシャルの下で古典力学に従う原子ないし分子の集団として扱ってよい。すなわち、物質の多くの現象は古典論に基いて説明することができる。これに対し、金属内の伝導電子や液体金属の電子集団、半導体内の電子や正孔の集団は、量子統計力学によって記述されなければならない。また、超流動ないしその近くでの 4He の集団や、1 K 前後より低温での液体 3He なども、量子統計力学による記述を必要とする。ただしこのことは、それらの系に対して直ちに古典統計力学が無力になることを意味しない。例えば、金属結晶中の電気伝導は古典的な自由電子気体モデル (ドルーデモデル) によって部分的に説明され、オームの法則ホール効果ヴィーデマン=フランツ則は古典的な現象として理解することができる。
背景
熱放射・空洞放射

量子統計力学が物理学の世界に初めて登場したのは1900年、今日ではプランクの法則として知られる、マックス・プランクによる熱放射の理論で、これは実に量子力学が現在のような形式で認識される以前のことであった(光電効果ハインリッヒ・ヘルツによって発見されたのが1887年アルベルト・アインシュタイン光量子仮説による説明が1905年1924年ルイ・ド・ブロイによる物質波のアイデアに基づいて、ヴェルナー・ハイゼンベルクによる行列力学1925年に発表、エルヴィン・シュレーディンガーによる波動力学1926年に発表された。同年、シュレーディンガーは波動力学と行列力学が等価な理論であることを示している。また、ハイゼンベルクによる不確定性原理の発見は1927年の事である)。空洞の中に閉じ込められて、空洞の壁と熱平衡になっている電磁場黒体放射)に古典統計力学を適用すると、エネルギー等分配の法則により、各単色光成分が平均としてはいずれも kBT なるエネルギーを持つことになる。ここで kB はボルツマン定数、T は壁の熱力学的温度を表す。しかしこれでは空洞内の電磁波スペクトル分布がまったく実験と合わないばかりか、電磁場は無限に自由度を持っているため、空洞内のエネルギーも熱容量も無限大になってしまう。量子論では、振動数 ν の単色光成分は量子化されてエネルギーhν をもつ光子としてふるまい、光子はボース分布に従うので、この単色光成分のエネルギーの平均値は .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}hν/(eβhν-1) となる。ここで、 β = (kBT)−1 は逆温度、また h はプランク定数である。これで分かるように、 hν ≫ kBT ⇔ βhν ≫ 1 を満たすような高い振動数の電磁波は、古典統計力学の記述から著しく外れる。
格子振動詳細は「デバイ模型」を参照

同様な問題は、固体内の格子振動でも見られる。古典統計力学によると、線形近似の下で、各原子が平均して 3kBT だけのエネルギーをもつことになるので、固体のモル比熱は 3kBT × NA = 3R ということになるが、低温になるにつれて、実際の比熱はこれより著しく小さくなり、絶縁体結晶の例では、比熱が低温では温度の三乗 T3 に比例していることが知られている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:27 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef