超臨界流体
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

臨界状態」とは異なります。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "超臨界流体" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2012年11月)

超臨界流体(ちょうりんかいりゅうたい、: Supercritical fluid)とは、臨界点以上の温度圧力下においた物質の状態のこと。気体液体の区別がつかない状態といわれ、気体の拡散性と、液体の溶解性を持つ。

なお、原子力工学における「臨界状態」とは異なる。

溶媒の臨界溶媒分子量g/mol臨界温度K臨界圧力MPa (atm)密度g/cm3
二酸化炭素44.01304.17.38 (72.8)0.469
18.02647.322.12 (218.3)0.348
メタン16.04190.44.60 (45.4)0.162
エタン30.07305.34.87 (48.1)0.203
プロパン44.09369.84.25 (41.9)0.217
エチレン28.05282.45.04 (49.7)0.215
プロピレン42.08364.94.60 (45.4)0.232
メタノール32.04512.68.09 (79.8)0.272
エタノール46.07513.96.14 (60.6)0.276
アセトン58.08508.14.70 (46.4)0.278

用途

超臨界流体としてよく使用される物質は、二酸化炭素である。

超臨界流体の酸化力が極めて高いため、腐食しにくいといわれているハステロイや白金・イリジウム合金(英語版)、さらにタンタルまでもが腐食する。安定な物質であるセルロースダイオキシンPCB超臨界水中では分解可能である。酸化力が極めて高いがゆえに使いづらいケースも多く、その場合は亜臨界水を用いる[1]。超臨界水の密度室温の液体水(1g/cm3)の0.03?0.4倍程度であり、100℃、0.1MPaの水蒸気に比べて数十?数百倍大きい[1]粘性率は気体並みに低く、自己拡散係数は液体と気体の中間程度で[1]、臨界水と亜臨界水は気体分子と同程度の大きな運動エネルギーを持ち、液体の1/10程度の密度を持つ活動的な流体といえる[1]。150?350℃、0.5?25MPaの亜臨界水は大きな加水分解力を持つ高温高圧の液体水であり、亜臨界水や超臨界水は温度圧力を制御することにより密度溶解度等のマクロな物性から、流体分子の溶媒和構造等のミクロな物性・構造まで連続かつ大幅に制御が可能。亜臨界・超臨界水は誘電率イオン積という反応場に大きな影響を与える要素の制御が容易で単一溶媒であり、尚且つ水溶性から非水溶性の特性を示し、イオン反応場からラジカル反応場までを提供することができる[1]

また、超臨界流体の二酸化炭素は、様々な物質をよく溶解する。目的物を溶解した超臨界二酸化炭素を臨界点以下にすると、二酸化炭素は気化するので、後には溶質のみが残る。気化した二酸化炭素は回収して再利用が可能である。実用としてコーヒー脱カフェインニンニクの臭気成分や機能性食品の有効成分の抽出などに使用されている。二酸化炭素は臨界温度が31℃と低いため、分子を破壊せずに活性を維持した状態で抽出する事ができる[2]

以上のように、超臨界流体を使用したプロセスは従来の重金属強酸などの触媒を使ったプロセス、あるいは可燃性毒性のある溶媒をこのプロセスに置き換えることで、環境に対する影響を低減させる特徴を持つ。また、ダイオキシンに代表される有害物質の分解にも使用可能である。そのため、グリーンサスティナブルケミストリーの視点から注目を集めている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:22 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef