走化性
[Wikipedia|▼Menu]
毛細管アッセイによる走化性の測定。運動性の原核生物は、環境中の化学物質を感知し、それに応じて運動性を変化させる。化学物質がない場合、運動は完全にランダムである。誘引物質や忌避物質が存在すると、直進は長くなり、方向転換(タンブル)の頻度は低くなる。その結果、化学物質に向かう、あるいは化学物質から離れる(つまり、化学物質の濃度勾配が上下する)正味の動きが生じる。この正味の動きはビーカーの中で見ることができる。(左)化学物質がない場合を比較対象とし、(中)細菌は誘引物質の発生源の周りに集まり、(右)忌避物質の発生源からは離れる。

走化性(そうかせい、英:chemotaxis)とは、生物体(単一の細胞や多細胞の生物体を問わず、細胞細菌など)の周囲に存在する特定の化学物質の濃度勾配に対して方向性を持った行動を起こす現象のことであり、化学走性(かがくそうせい)ともいう。 この現象はたとえば細菌がブドウ糖のような栄養分子の濃度勾配のもっとも大きな方向に向かって移動するために、あるいはフェノールのような毒性物質から逃げるために重要である。多細胞生物でも走化性は通常の生命活動においてだけでなく、その生命の初期(たとえば受精の際の精子への運動)やそれに続く諸段階(神経細胞リンパ球の遊走など)にも必須の性質である。しかしがん転移では、動物の走化性を起こす機構がくずれることもわかっている。

対象となる化学物質の濃度勾配に対し、それが高い方向へ運動することを「正の走化性」とよび、その逆への運動は「負の走化性」とよばれる。
走化性研究の歴史走化性研究の歴史

好中球は人体の細菌感染に対する最初の防御線である。切り傷や擦り傷が生じると、好中球は付近の血管から外に出て細菌が産生する化学物質を認識し、その「においの方向」へと遊走する。この好中球はある種の細菌が産生するペプチド鎖FMLP(Nホルミルメチオニルロイシルフェニルアラニン)の濃度勾配にしたがって並んでいたのである。細胞遊走はすでに顕微鏡が発明された当初から知られていた(レーウェンフック)が、最初の学術的な記述は細菌についてT.W.エンゲルマン(en:Theodor Wilhelm Engelmann)(1881)およびW.F.プフェファー(en:Wilhelm Pfeffer)(1884)に、繊毛虫についてH.S.イェニングス(en:Herbert Spencer Jennings) (1906)によって行われた。ノーベル医学・生理学賞を受賞したメチニコフも、(受賞研究である)食作用の最初の段階としての走化性について研究を行い、この分野に貢献している。 1930年代には生物学臨床病理学において、走化性の重要性が広く受け入れられるようになった。 この現象に関する基本的な定義のほとんどもこの時期に作られている。走化性分析法(ケモタクシスアッセイ)の質的管理の上で最も重要な部分は、1950年代にヘンリー・ハリスによって記述された。1960年代および70年代には細胞生物学と生化学で革命的発展があり、さまざまな新しい技術によって走化性応答細胞の遊走の様子や、その際走化性活動にかかわる細胞よりも小さなレベルの部分まで研究が可能となった。ジュリアス・アドラーの先駆的業績に、走化性にかかわる細菌の細胞内シグナル伝達過程全体を理解する上での重要な転機が描かれている[1]

2006年11月3日にケンブリッジ大学のデニス・ブレイ(en:Dennis Bray)は大腸菌の走化性に関する研究でマイクロソフト賞(en:Microsoft Award)を受賞している[2][3]
誘引物質と忌避物質化学誘引物質(上段)・忌避物質(下段)の効果[4]。色のグラデーションは濃度勾配を表している(以下の図でも同様)

化学誘引物質(Chemoattractant, 化学遊走物質とも)および化学忌避物質(Chemorepellent)は、運動性の細胞にそれぞれ正または負の走化性を引き起こす効果を持った無機物あるいは有機物である。化学誘引物質の効果は既知あるいは未知の走化性受容体を通して発現するが、あるリガンドが化学誘引物質の側面を持つかどうかは標的細胞に対して特異的であり、濃度依存的である。もっともよく研究されている化学誘引物質はホルミルペプチドケモカインである。化学忌避物質への反応は体軸性の泳動となって現れるが、これは細菌の基本的な運動現象と考えられている。化学忌避物質として最もよく研究されているのは無機塩類アミノ酸およびケモカインである。
細菌の走化性

大腸菌のようなある種のバクテリアには鞭毛が(一般には一細胞あたり4-10個)ある。この鞭毛は二通りの回転を行う[5][6]
反時計回転を行うと鞭毛は一まとまりとなり、細菌は直線的に泳ぐことが可能となる。

時計回転では鞭毛の束がばらけて各鞭毛がばらばらの方向を向き、その結果細菌はその場でランダムな方向転換(タンブル)をする。

 ※ ここでの回転の向きは、細胞の外部から鞭毛を見た場合のそれである大腸菌の泳ぎ行動と鞭毛の回転の相関(CCW:反時計回転、CW:時計回転)[4]
行動

細菌の運動はすべてタンブルと泳ぎの相が交互に組み合わさった結果である。ある決まった環境の下で細菌の泳ぎを観察すると、比較的まっすぐな泳ぎがランダムな方向転換(タンブル)で中断される、というランダムウォークのような運動をしているのがわかる。大腸菌のような細菌は泳ぎの方向を自ら決めることはできず、回転の拡散のために数秒程度しかまっすぐに泳ぐこともできない。細菌は自分の進む方向を忘れてしまう、といってもよい。このような制約を受けているものの、細菌は誘引物質(普通は食物)の濃度が高い好ましい方向を見つけたり、忌避物質(普通は毒物)から逃げるために自分の運動を決めることができることは重要である。

化学濃度勾配の存在下で細菌は走化性、つまり濃度勾配に基づいた向きへの運動をおこなう。細菌が自分の運動の向きを正しい(誘引物質に向かっている、または忌避物質から逃げいている)と感じると、タンブル運動に転ずるまでの直線的な泳ぎをより長く続ける。逆に間違っているときは、より早くタンブルに転じてランダムに新たな方向をさがす。つまり大腸菌などの細菌は、自らの生命がよい状況下にあるか危機にさらされているかを決定するためのとっさの判断を行う。こうして誘引物質の濃度が最も高い場所(普通はその物質そのもの)を手際よく見つけるのである。その物質の濃度が非常に高い場合でも、ごく小さな差異を弁別することが可能である。この能力は忌避物質から逃げる場合にも同じ効果をあげる。

この目的性を持ったランダムウォーク(バイアス-ランダムウォーク[7])が二つのランダムな運動、タンブルと直線的な泳ぎのどちらかを選択しただけによる結果だということは、注目すべきことのように思われる。実際方向を「忘れ」たり運動を「決定」するという走化性の反応は、より高次な生命体の感覚情報を持った脳が意思決定能力を持っているのと似ている。

このような運動が起こるためには、一つ一つの鞭毛フィラメントのらせん状の性質が重要である。鞭毛フィラメントを形成するタンパクであるフラジェリンは、そのものが非常にらせん菌に似ている。このよく保存されたフラジェリンタンパクを認識するようにデザインされた免疫受容体(TLR5)を脊椎動物は持っており、これをうまく利用しているといえる。

生物学の多くの例と同様、細菌にもこの法則に従わないものはある。ビブリオ属など多くの細菌は一本の鞭毛を持ち(単鞭毛)、これが細胞の一方の極にあって、その走化性運動の仕方は風変わりである。単鞭毛は細胞壁の内部にあり、細胞全体を回転させて運動する。その形はコルク栓抜きのようである[8]
シグナル伝達アスパラギン酸走化性受容体のドメイン構造[4]。ligand binding:リガンド結合部、surface membrane:外膜、coiled-coil domain:コイルドコイルドメイン、methylation:メチル化、signal-transmitter:シグナル伝達部

化学物質の濃度勾配を検知するのは種々の膜貫通型受容体でメチル基受容走化性タンパク質(methyl-accepting chemotaxis proteins, MCPs)と呼ばれ、探知する分子ごとに異なっている。大腸菌では、MCPはアスパラギン酸受容体 (Tar)、セリン受容体(Tsr)、リボース/ガラクトース受容体(Trg)、ジペプチド受容体(Tap)の4種類である[4]。この受容体は誘引物質や忌避物質と直接間接に結合し、細胞膜周囲腔(グラム陰性菌細胞膜と外膜の間、グラム陽性菌ではそれに該当する区域)のタンパク質と相互反応する。これら受容体からのシグナルは細胞膜を経由して細胞質内に伝達され、Cheタンパクが活性化される[9]。Cheタンパクはタンブルの頻度と受容体の変化を起こす。



鞭毛の制御

CheWタンパクおよびCheAタンパクは受容体に結合している。外部刺激による受容体の活性化は、ヒスチジンキナーゼであるCheAの高度に保存された1ヒスチジン残基自己リン酸化する。CheAは続いてリン酸基を応答調節因子のCheBおよびCheYに保存されたアスパラギン酸残基へと転移する(CheAはヒスチジンキナーゼであってリン酸基をアクティブに転移するわけではなく、応答調節因子CheBがリン酸基をCheAから奪うかたちである)。このシグナル伝達の機構は二成分制御系(two-component regulatory system)と呼ばれ、細菌におけるシグナル伝達の一般的な形態である[10]。CheYタンパクは鞭毛のスイッチタンパクであるFliMと相互反応して、鞭毛の回転を反時計回転から時計回転へと変えることでタンブルを誘導する[4]。一つの鞭毛の回転状態が変わることで鞭毛全体の束が乱れ、タンブルが起きるのである。
受容体の制御大腸菌のシグナル経路[4]

CheBタンパクはCheAに活性化されると脱メチル化酵素として働き、受容体の細胞質側にあるグルタミン酸残基を脱メチル化する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:44 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef