調和級数
[Wikipedia|▼Menu]

数学における調和級数(ちょうわきゅうすう、: harmonic series)とは発散無限級数 ∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+\cdots }

のことをいう。名称の「調和」(harmonics) というのは音楽や和声学における倍音の概念に由来するもので、振動する弦の倍音の波長がその弦の基本波長の 1/2, 1/3, 1/4, ... となっていることによる。調和級数の各項は前後の項の調和平均になっており、また調和平均という用語もやはり音楽に由来するものである。
歴史

史実として、調和級数が発散することの最初の証明は14世紀のニコル・オレームによるものだが[1]、これには誤りがあった。後に正しい証明がなされるのは17世紀、ピエトロ・メンゴリ(英語版)、ヨハン・ベルヌーイヤコブ・ベルヌーイらによってである。

歴史的には、調和数列は建築学の観点からの需要があった。特にバロック時代には、平面図立面図での均衡をとるために、あるいは教会や宮殿の内装と外装の構造的詳細の調和関係を確立するために用いられた[2]
導入

調和級数は、その項の極限が 0 になるにもかかわらず発散するという意味で、初学者にとっては直観的ではない級数である。つまり、0 に収束する数列の無限和が必ずしも有限値に収束するとは限らないことが示される。調和級数が発散することに起因するいくつかの逆理や直観に反する結果が知られている。

例えば、「ゴムひもの上の芋虫」(“worm on the rubber band”) と呼ばれる逆理がある[3]。内容は「1メートルの(無限に伸びることができる)ゴムひもがある。ひもの一端からもう一方の端に向かって芋虫が毎分1センチの速さでひもの上を這うものとする。ゴムひもは1分ごとに(正確には芋虫が1センチ這った直後に)一様に長さが1メートル引き伸ばされる。すなわち、1分後に芋虫は始点から1センチ這っただけだが、実際は(ゴムひもが引き伸ばされたため)始点から2センチの位置にいることになる。2分後にはそこからさらに1センチしか這っていないにもかかわらず、実際は始点から4.5センチの位置にいる。このようなプロセスを繰り返すとき、芋虫はひもの端まで到達できるだろうか」というものである。答えは、直観に反して「到達できる」である。出発点とT 分後に芋虫がいる位置との距離を LT センチメートルとすると、LT は L T = T + 1 T ( L T − 1 + 1 ) , {\displaystyle L_{T}={\frac {T+1}{T}}{\bigl (}L_{T-1}+1{\bigr )},} (ただし L 0 = 0 {\displaystyle L_{0}=0} とする)

という漸化式で表される。これを解くと、 L T = ( T + 1 ) ∑ n = 1 T 1 n {\displaystyle L_{T}=(T+1)\sum _{n=1}^{T}{\frac {1}{n}}}

となる。一方、T 分後のゴムひもの長さは 100(T +1) センチメートルだから、芋虫が端点に到着できるのは、 ( T + 1 ) ∑ n = 1 T 1 n ≥ 100 ( T + 1 ) {\displaystyle (T+1)\sum _{n=1}^{T}{\frac {1}{n}}\geq 100(T+1)}

となるとき、すなわち 1 100 ∑ n = 1 T 1 n ≥ 1 {\displaystyle {\frac {1}{100}}\sum _{n=1}^{T}{\frac {1}{n}}\geq 1}

となるときである。この級数は T を大きくすればいくらでも大きくすることができるから、十分大きな T に対して上の式は成り立つ。すなわち芋虫は端まで到達できることになる。ただし、そのようなことになるためには n の値を極めて大きくする必要がある。具体的には、後述の積分判定法のところで見るように、左辺の Σ の和は ln (T +1) よりわずかに大きな値をとるので、およそ e100 ≒ 1043.429... 分でやっと端に到達できることになる。

別な例として「まったく同じドミノの集まりが与えられたとき、それをテーブルの縁に積み上げることができるのは明らかだが、それではテーブルのへりを(どの程度)張り出すように積めるか」というものが挙げられる。この直観的でない結果というのは、「ドミノが十分あれば、いくらでも好きなだけ張り出させることができる」である[4][3]
発散性

調和級数は正の無限大 +∞ に発散する。この事実を証明する方法はよく知られたものがいくつか存在する。
比較判定法

調和級数の発散性を示す方法の一つは別の発散級数と比較することである。調和級数の各項は、以下の第二の級数の対応する項よりも大きいかさもなくば一致するので、調和級数の和の値は第二の級数よりも大きい。 1 + ( 1 2 ) + ( 1 3 + 1 4 ) + ( 1 5 + 1 6 + 1 7 + 1 8 ) + ( 1 9 + ⋯ > 1 + ( 1 2 ) + ( 1 4 + 1 4 ) + ( 1 8 + 1 8 + 1 8 + 1 8 ) + ( 1 16 + ⋯ = 1 + 1 2 + 1 2 + 1 2 + 1 2 + ⋯ = ∞ . {\displaystyle {\begin{aligned}&1+\left({\frac {1}{2}}\right)+\left({\frac {1}{3}}+{\frac {1}{4}}\right)+\left({\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}\right)+\left({\frac {1}{9}}+\right.\cdots \\[12pt]>{}&1+\left({\frac {1}{2}}\right)+\left({\frac {1}{4}}+{\frac {1}{4}}\right)+\left({\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}}+{\frac {1}{8}}\right)+\left({\frac {1}{16}}+\right.\cdots \\[12pt]={}&1+{\frac {1}{2}}+{\frac {1}{2}}+{\frac {1}{2}}+{\frac {1}{2}}+\cdots =\infty .\end{aligned}}}

しかし、第二の級数の値は無限大であるから比較判定法により、調和級数の和も同様に無限大となる。もっとはっきり述べれば、上記の証明において比較 ∑ n = 1 2 k 1 n > 1 + k 2 {\displaystyle \sum _{n=1}^{\,2^{k}\!}{\frac {1}{n}}>1+{\frac {k}{2}}}

が任意の正の整数 k に対して成立する。この証明はニコル・オレームによるもので、中世の数学の極みである。現在では、この方法が教科書的な証明の標準的なものとして教えられている。コーシーの判定法はこの方法を一般化したものになっている。
積分判定法

調和級数の発散をある広義積分との比較によって示すこともできる。これには、調和級数の各項に対応する面積をもつ可算無限個の長方形の集まりを考える。n 番目の項に対応する長方形は、横幅 1、高さ 1/n を持つものとする。これらの長方形の面積の合計は調和級数 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ {\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+{\frac {1}{5}}+\cdots }


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:38 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef