調和函数
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事のほとんどまたは全てが唯一の出典にのみ基づいています。他の出典の追加も行い、記事の正確性・中立性・信頼性の向上にご協力ください。
出典検索?: "調和関数" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2015年7月)
環帯上で定義された調和関数

数学における調和関数(ちょうわかんすう、: harmonic function)は、ラプラス方程式を満足する二回連続的微分可能関数のことをいう。

調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。

20世紀には、ウィリアム・ホッジジョルジュ・ド・ラーム小平邦彦らが調和積分論の発展の中心的な役割を果たした。
導入

物理学において生じる調和函数は、その特異点と(ディリクレ境界条件ノイマン境界条件などの)境界条件によって決定される。さらに、境界のない領域上では任意の整函数の実部または虚部が同じ特異点を持つ調和函数を与えるから、この場合調和函数をその特異点のみで決定することはできないが、物理学的な要請として解は無限遠において消えるものと仮定すれば、やはり一意的な解を得ることができる(この一意性はリウヴィルの定理による)。

このような調和函数の特異点は、電気力学の言葉で言えば「電荷」や「電荷密度」として解釈することができて、対応する調和函数はこの電荷分布に従う電位に比例するものと理解することができる。またそのような函数は定数倍したり、回転したり、定数を加えたりしても調和函数を与える。調和函数の反転(英語版)もまた調和函数だが、特異点はもとの函数の(球面に関する)「鏡像」に写る。二つの調和函数の和も調和函数である。
定義といくつかの事実

関数 f: Cn (resp. Rn) → C (resp. R) がラプラス作用素 Δ = ∂ 2 ∂ x 1 2 + ∂ 2 ∂ x 2 2 + ⋯ + ∂ 2 ∂ x n 2 {\displaystyle \Delta ={\frac {\partial ^{2}}{\partial x_{1}^{2}}}+{\frac {\partial ^{2}}{\partial x_{2}^{2}}}+\cdots +{\frac {\partial ^{2}}{\partial x_{n}^{2}}}}

に対し、Δf = 0 を満たすとき、関数 f は調和 (harmonic) である、あるいは f は調和関数であるという。

与えられた領域 U 上の調和函数全体の成す集合はラプラス作用素 Δ のであり、従ってベクトル空間となる。すなわち、調和函数の和・差・スカラー倍はまた調和函数になる。

領域 U 上の調和函数 f に対し、f の任意の偏導函数はまた U 上の調和函数である。ラプラス作用素 Δ と偏微分作用素 ∂ は調和函数のクラスの上では可換になる。

幾つかの意味において、調和函数は正則函数の実解析における対応物と考えることができる。任意の調和函数は実解析的である(つまり局所的に冪級数によって表される)。これは楕円型作用素(ラプラス作用素はその例としてよく知られている)に関する一般的な事実である。

調和函数の一様極限函数はまた調和函数である。これは中間値性質をもつ任意の連続函数が調和であることから分かる。(?∞, 0) × R 上の函数列を fn(x,y) = exp(nx)cos(ny)/n と定めればこれは一様に零函数に収束するが、注意すべきはこれらの偏導函数の成す列は(零函数の導函数としての)零函数には一様収束しないことである。つまり、極限が調和であるというためには連続性と中間値性質の両方を満足することが重要であることを示している。

性質

以下では i を虚数単位として用いる。
複素関数と2次元調和関数

複素数 z = x + iy (x, y ∈ R) を変数とする複素 1 変数複素関数 f (z) について、これを実 2 変数の関数として書き直すことができる。実 2 変数複素関数 w(x, y) = f(z) を、実部と虚部に分解するとw(x, y) = u(x, y) + iv(x, y) (u, v ∈ R),実部と虚部に対応する実 2 変数の実関数として u(x, y) と v(x, y) が得られる。このとき、w が複素微分可能であれば u(x, y), v(x, y) は実 2 変数の調和関数となる。コーシー・リーマンの関係式より、2 つの関数 u(x, y), v(x, y) は { ∂ u ∂ x ( x , y ) = ∂ v ∂ y ( x , y ) ∂ u ∂ y ( x , y ) = − ∂ v ∂ x ( x , y ) {\displaystyle {\begin{cases}{\dfrac {\partial u}{\partial x}}(x,y)={\dfrac {\partial v}{\partial y}}(x,y)\\{\dfrac {\partial u}{\partial y}}(x,y)=-{\dfrac {\partial v}{\partial x}}(x,y)\end{cases}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:38 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef