誤り検出訂正
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2018年1月)

誤り検出訂正(あやまりけんしゅつていせい)またはエラー検出訂正 (error detection and correction/error check and correct) とは、データに符号誤り(エラー)が発生した場合にそれを検出、あるいは検出し訂正(前方誤り訂正)することである。検出だけをする誤り検出またはエラー検出と、検出し訂正する誤り訂正またはエラー訂正を区別することもある。また改竄検出を含める場合も含めない場合もある。誤り検出訂正により、記憶装置デジタル通信・信号処理の信頼性が確保されている。
誤り検出と誤り訂正

一般に誤り検出訂正では、k 単位長(k ビット、k バイト など)の符号を、n = m + k 単位長の符号語に変換する。これを (n, k) 符号、あるいは、符号形式を添えて (n, k) ××符号などと呼ぶ(誤り訂正符号"Error Correction Code"を特にECCと略す)。符号語は、最小ハミング距離が d > 1、つまり、互いに少なくとも d 単位が異なっていて、この冗長性を利用して前方誤り訂正が可能となる。dを添えて、(n, k, d) 符号ともいう。

適切な (n, k, d) 符号は、符号語あたり d - 1 単位の誤りを検出でき、[(d - 1) / 2] 単位([ ] は床関数)の誤りを訂正できる。d ≦ 2 ならば、誤り訂正能力は [(d - 1) / 2] = 0 となり、単なる誤り検出となる。ただし、データの消失に対しては、つまり誤り位置がわかっているときは、d 単位の消失を訂正できる。これを特に消失訂正と呼ぶ。単なる誤り訂正も、最低 1 単位の消失訂正能力を持つ。

たとえば、(2, 1, 2) 符号であるミラーリングは、

どちらかに誤りが起これば検出できるが、両方に起これば検出できない。(誤り検出能力1)

どちらか(どちらかはわからない)に誤りが起これば訂正できない。(誤り訂正能力0)

どちらかが消失すれば訂正できるが、両方に起これば訂正できない。(消失訂正能力1)

となる。(3, 1, 3) 符号である三重ミラーリングでは、誤り検出能力と消失訂正能力が2となり、誤り訂正能力1も得る。

双方向の通信では、前方誤り訂正ができなくても誤り検出さえできれば、送信者に再送を要求することで実質的に誤りを訂正できる。これを自動的におこなう仕組みを、自動再送要求 (ARQ, Automatic Repeat reQuest) と呼ぶ。
バースト誤りとランダム誤り

誤りには、

短い区間に多数の誤りが集中するバースト誤り

散発的に単独で誤りが発生するランダム誤り

の2種類がある。

多くの誤り検出・訂正は、全体の誤り率が許容範囲でも、バースト誤りに対しては、1つのブロックに多くの誤りが集中するため、対応できない。そこで、符号の順序を入れ替え、同じブロックのデータを分散させ、バースト誤りが1つのブロックに集中しないようにする。この技術をインターリーブという。
バースト誤り

切り替え動作、フェージングなどが原因。%SESを評価尺度に用いるのに適している。
ランダム誤り

熱雑音などが原因。BERを評価尺度に用いるのに適している。
誤り補正

特に音声や映像など、人間の感覚に訴える信号のディジタル化されたデータで真の値から多少の誤差が許容される場合、誤り検出は可能でも誤り訂正が不可能(訂正能力を超えている)かまたは誤り訂正が実装されていないとき、元のデータ自身に含まれる冗長性を利用して欠落データを予測して置き換えることがある。これを特に誤り補正 (error compensation) と呼んで区別する。補正されたデータは真の値と一致するとは限らないが、真の値から許容される誤差内にあると期待される。CDなどでは、誤り補正がデータ読み取り誤りに対する「最後の手段」として使われている。

誤り補正では、一般には、近傍の標本に重み付けをした和、すなわちフィルタを畳み込んだ値を予測値(補正値)とする。特に、直前・直後の標本を使うものを、以下のように呼ぶ。 x n = 1 2 ( x n − 1 + x n + 1 ) {\displaystyle x_{n}={\frac {1}{2}}(x_{n-1}+x_{n+1})} - 平均値補間 x n = x n − 1 {\displaystyle x_{n}=x_{n-1}\,} - 前値ホールド x n = x n + 1 {\displaystyle x_{n}=x_{n+1}\,} - 後値ホールド

誤り補正は原信号自身に含まれる冗長性を使うため、データ圧縮、特に非可逆圧縮と同種の原理に基づいている。
誤り検出・訂正の例
誤り検出

ブロック符号

2重化

バックアップ

ミラーリング - RAID-1


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:19 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef