視等級
[Wikipedia|▼Menu]
見かけの等級が付された小惑星キュベレーと2つの恒星

見かけの等級[1](みかけのとうきゅう、: apparent magnitude、記号 m)は、地球から観測された星などの天体の明るさを表す尺度である。見かけの等級は、その天体固有の光度、地球からの距離、観測者と天体との間に存在する星間塵が引き起こす減光などによって決まる。
概要

高倍率での眼視観測の限界等級[2]望遠鏡の口径(mm)限界等級
3511.3
6012.3
10213.3
15214.1
20314.7
30515.4
40615.7
50816.4
等級 (天文)」も参照

等級は対数スケールで表される。すなわち、その天体が明るいほど、その等級の数値は小さくなる。たとえば、+2.0等星と+3.0等星とでは、より数値の小さい前者のほうが明るく見える。非常に明るく見える天体は、見かけの等級の値が負となっている。例えば、金星の見かけの等級は−4.2等、シリウスの見かけの等級は−1.46等である。暗い夜に肉眼で見える最も暗い星の見かけの等級は+6.5等くらいとされるが、これは視力や高度、大気の状態によって異なる[3]。既知の天体の見かけの等級は、太陽の−26.7等から、ハッブル宇宙望遠鏡の画像内の天体の+30等までの範囲に及ぶ[4]。ある天体が別の天体より5等級「高い」と測定された場合、それは100倍「暗い」ことを意味する。2つの天体の等級の差1.0がであれば、明るさの比は5√100(100の5乗根)、約2.512に相当する。例えば、2.0等星は3.0等星よりも約2.512倍明るく、7.0等星よりも100倍明るいということとなる。

見かけの等級を測定することを測光と呼ぶ。天体からの光は、波長によってその強さが異なり、その値はどの波長帯(バンド)で測るのかによって異なる。そのため、測光観測や撮像観測の際に標準的に使われる波長帯が定められており、測光システム(測光系)と呼ばれる。測光システムでは、紫外可視光赤外などの波長帯域で、中心となる波長やフィルタの透過特性が定められている。代表的なものに、ジョンソンのUBVシステム(UBVシステム)やSDSSのu', g', r', i', z' システムなどがある[5]

絶対等級は、天体の見かけの明るさではなく、天体の固有の明るさを表す尺度であり、同じく逆対数スケールで表される。絶対等級は、星やその他の天体が観測者から10 パーセク (pc) 、すなわち約32.6光年の距離から観測した場合の見かけの等級、と定義されている。単に「等級」とだけ書かれている場合、絶対等級ではなく見かけの等級を指す。

見かけの等級は、「実視等級 (visual magnitude)」と混同されることがあるが、これらは異なる概念で定義される等級である[6]。実視等級は「緑から黄色にかけて感度の高いヒトの肉眼で見た明るさで定められた等級[6]」であり[6]、ヒトの肉眼よりも青い波長に強い感度を持つ写真乾板の撮像から得られた「写真等級 (photographic magnitude)」と区別するために使われた。後に、実視等級もフィルタに補正をかけた写真観測で得られるようになり、これは「写真実視等級 (photovisual magnitude[7])」と呼ばれた[8]
歴史
等級スケール

等級スケールは、肉眼で見える星を6つの階級に分割したヘレニズム期からの慣習に遡る。夜空で最も明るい星は1等星 (m = 1) 、最も暗い星は6等星 (m = 6) とされていた。6等星は、望遠鏡等の観測機器の助けなしでの人間の視覚の限界である。等級ごとに次の等級の明るさの2倍(対数目盛)と考えられていたが、当時は光検出器が存在しなかったため、各等級の比率は主観的なものであった。このやや粗雑な星の明るさの尺度は、プトレマイオスが著書『アルマゲスト』の中で広めたもので、ヒッパルコスが起源であるとされることが多い。ヒッパルコスのオリジナルの星表が失われているため、この説を証明も反証もできない。ただし、ヒッパルコス自身が遺した唯一のテキスト(アラトスの注釈)では、常に「大きい」「小さい」とか、「明るい」「かすかな」とか、あるいは「満月でも見える」などの表現が使われており、ヒッパルコスは明るさを数字で表すシステムを持っていなかったことがはっきりと見て取れる[9]

19世紀の半ばにジョン・ハーシェルによって、1等星は6等星の約100倍の明るさであることが発見された[10]。1856年に、ノーマン・ロバート・ポグソンは、1等星は6等星よりも正確に100倍明るいと定義し、現在でも使用されている対数スケールを確立した。ポグソンは、等級mの星は等級m + 1の星のよりも5√100倍、つまり約2.512倍明るいとするシステムを構築した[10][11]。100の5乗根であるこの比は「ポグソン比」として知られるようになった。恒星の見かけの等級をm、見かけの明るさをlとしたとき、2つの恒星の等級の差と明るさの比は、「ポグソンの式」と呼ばれる以下の関係式で表される[12]。 m 2 − m 1 = − 2.5 log 10 ⁡ ( l 2 / l 1 ) {\displaystyle m_{2}-m_{1}=-2.5\log _{10}(l_{2}/l_{1})}
等級の原点

見かけの等級ベガとの
明るさの比夜空でこの等級よりも
明るく見える恒星の数眼視可能か否か
−1.0251 %1(シリウス)Yes
0.0100 %4
1.040 %15
2.016 %48
3.06.3 %171
4.02.5 %513
5.01.0 %1602
6.00.4 %4800
6.50.25 %9100
7.00.16%14000No
8.00.063 %42000
9.00.025 %121000
10.00.010 %340000

ポグソンの式によって天体の明るさを相対的に比較することが可能となったが、それぞれの天体の等級を定めるには原点を定める必要がある。等級の原点を定めるために何を基準とするかは、観測技術の発達に伴って変遷してきた。

1884年にエドワード・ピッカリングは、北極星であるこぐま座α星を2.0等と定義して、天体の明るさの基準とした[13]。しかし、こぐま座α星がわずかに変光することが知られてから後は、こぐま座λ星を6.5等と定義し直して、多数の北極標準星野の暗い星の観測が行われた[13]。そして、1922年の第1回国際天文学連合総会において、北極標準星野の96個の星の国際写真等級 (IPg) と国際写真実視等級 (IPv) が定められ、原点とされた[13]。これは、国際式PgPvシステムと呼ばれる[13]

1953年、ハロルド・レスター・ジョンソンは、北極標準星野の恒星が星間物質による赤化を受けていることなどから、彼の提唱するUBVシステムでは等級の原点を以下のように定め直した。

北極標準星野の6つの恒星の国際写真実視等級をV等級の原点とする。

U等級とB等級は、A0Vのスペクトルを持つ、こと座α星(ベガ)おおぐま座γ星おとめ座109番星かんむり座α星へびつかい座γ星HR 3314の6つの星の平均の U − B、B − Vを0として(すなわち U = B = V として)定める[13][14]

各波長の0等級がどれだけの放射流束密度に対応するかは、星のスペクトルエネルギー分布(SED)を測って決められる。ベガは最も高い精度でSEDが測定されていたことから、ベガのSEDを基に等級と放射流束密度の対応が定められた[13]。このような背景からベガ等級という通称で呼ばれる[15]。この通称とベガの見かけの等級が0等級に非常に近いことから「ベガの見かけの等級を0等級と定めたもの」と誤解されがちだが、UBVシステムの等級の原点は上記のように定義されており、実際にはベガの見かけの等級は、U = 0.02等、B = 0.03等、V = 0.03等と、0等級からわずかに外れた値となっている[13]。このわずかな補正を除けば、ベガの明るさは、可視光と近赤外の波長では0等級の定義として機能しており、そのスペクトルエネルギー分布 (SED) は、11000 Kの黒体のそれに近い。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:45 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef