複素対数函数
[Wikipedia|▼Menu]
複素対数の枝の一つ: 色相偏角を、彩度明度絶対値を表す。(カラーエンコードの詳細は画像をクリック)

複素解析における複素対数函数(ふくそたいすうかんすう、: complex logarithm)は、実自然対数函数実自然指数函数の逆函数であるのと同様の意味において、複素指数函数逆「函数」である。すなわち、複素数 z の対数 w とは ew = z を満たす複素数を言い[1]、そのような w を ln z や log z などと書く。任意の非零複素数 z は無限個の対数を持つ[1]から、そのような表記が紛れのない意味を為すように気を付けねばならない。

極形式を用いて z = reiθ (r > 0) と書くならば、w = ln r + iθ は z の対数の一つを与えるが、これに 2πi の任意の整数倍を加えたもので z の対数はすべて尽くされる[1]
複素指数函数の逆函数複素対数函数の多価なる虚部を枝が分かるように描いたもの。複素数 z が原点を周れば、対数の虚部が上下する。これにより、原点はこの函数の分岐点となる。

逆函数を持つためには、函数は一対一(単射)でなければならないが、複素指数函数は単射でない(実際、任意の w とすべての整数nに対して ew+2nπi = ew が成り立つことが、w に iθ を加える操作が ew を反時計回りに θ ラジアン回転させることから言える)し、さらに悪いことに垂直線上に等間隔に並ぶ無限個の複素数の列 … , w − 4 π i , w − 2 π i , w , w + 2 π i , w + 4 π i , … {\displaystyle \ldots ,\;w-4\pi i,\;w-2\pi i,\;w,\;w+2\pi i,\;w+4\pi i,\;\ldots } がすべて、指数函数によって同一の複素数へ写されるのである。したがって、複素指数函数は通常の意味での逆函数は持たない[2][注釈 1]

この問題の解決法として、二通り考えられる:

一つは、指数函数の定義域をどの二つの数も 2πi の整数倍の差を持たないような領域に制限することである。この方法では、自然に log z の枝(定義域に属する各数の対数を一つずつ切り出して得られる函数)を定義することになる。これは例えば、逆正弦函数 arcsin x の [?1, 1] 上定義された枝を、正弦函数 sin θ の区間 [?π/2, π/2] への制限の逆函数として定めるのと同様である(上記範囲内の x に対し sin θ = x を満たす実数 θ は無限個存在するが、それでも(いくぶん作為的ながら)[?π/2, π/2] に入るものを考えれば、それは一つしかないのであった)。

もう一つは、対数函数をガウス平面上の函数でなく、穴あき (つまり原点を除く) ガウス平面を無限個貼り合わせた被覆空間としてのリーマン面上で定義された函数と見ることによって、対数の不定性を解決することである。

枝をとる方法は、一つの複素数に対して値が評価できる点で優位性がある。他方、リーマン面上の函数と見る方法は、log z の全ての枝をひとまとめに扱えて、定義に任意性のある選択を含めなくてよいという点において筋が良い。
対数の主値

各非零複素数 z = x + yi に対して、その対数の主値 Log z とは、虚部が区間 (−π, π] に属する対数を言う。ew = 0 を満たす複素数 w は存在しないから、式 Log 0 はやはり定義されない。

この主値はいくつか別のやり方でも記述できる。

Log z の表式を得るために、z を極形式 z = reiθ で表せば、θ に 2πi の整数倍を加えるだけの不定性を以って z の極形式は一意ではないが、θ が区間 (−π, π] に属する(この θ を偏角の主値 Arg z という[注釈 2])とすれば「一意にする」ことができるから、これにより対数主値を Log ⁡ z := ln ⁡ r + i θ = ln ⁡ 。 z 。 + i Arg ⁡ z {\displaystyle \operatorname {Log} z:=\ln r+i\theta =\ln |z|+i\operatorname {Arg} z} と定義することができる。右辺の ln は通常の実自然対数である。例えば Log(−3i) = ln 3 − .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}πi/2 となる。

もう一つの Log z の記述の仕方は前節で述べたように複素指数函数の制限の逆函数としてのもので、垂直な帯状領域 S を w = x + yi (−π < y ≤ π) なる複素数全体の成す集合とすれば、これはどの二つも 2πi の整数倍の差を持つことのない領域であるから、指数函数を S に制限したものは逆函数を持つ。実は、複素指数函数は S を穴あき平面 C* = C ∖ {0} へ全単射に写し、逆函数は Log: C* → S となる。この写像の幾何学的性質の詳細は後述

特に断りなく log z のように書かれた場合には、一般には主値について言っているものと考えたほうが安全である。そうすれば特に、z が正の実数のときの実数値の ln z と矛盾しない。しかし主値を他の対数と区別する目的では、頭文字を大文字化する記法を用いて Log と書く[1]のが適当である。

実自然対数 ln の満足する等式は、複素数に拡張した場合には必ずしも成立しない。任意の z ≠ 0 に対して等式 eLog z = z は成立する(これは単に Log z は z の対数(の一つ)であると言っていることに相違ない)が、等式 Log ez = z は帯状領域 S の外側では正しくない。この理由により、等式 ez = ew の両辺に Log を施して z = w を得ることは常にはできない。また、等式 Log(z1z2) = Log z1 + Log z2 の両辺は 2πi の整数倍だけ異なり得る。

函数 Log z は各負の実数において不連続だが、それ以外の C* の各点において連続である。この不連続性を説明するために、z が負の実数 a へ近づくときに Arg z に何が起きるのかを考える。z が a に上から近づくならば、Arg z は π(= Arg a) に近づくが、z が a に下から近づくならばArg z は −π に近づく。ゆえに Arg z は z が負の実軸をまたぐとき 2π だけ値が跳び、その結果 Log z も 2πi だけ跳ぶ。
枝の選択

もっと別な方法を用いれば、各非零複素数に対して対数を一つずつ選んでできる函数 L(z) が C* の全ての点上で連続となることができるであろうか、残念ながら答えは「否」である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:35 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef