装甲
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "装甲" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2022年2月)
.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}16世紀の人馬用甲冑を再現したもの地雷やIEDに対抗するため、装甲防御力を高めたMRAPの一種であるマックスプロ

装甲(そうこう、: Armor)とは、敵弾を防ぐために船体車体に張られた鋼鉄板などのこと[1]
歴史

古来より戦時下において装甲の必要性が求められ、常に最前線でさまざまな攻撃から身を守るなどの防具が必要とされた。しかし強固なこれらの防具は必然的に重くなり、次第に行動力と防護力の兼ね合いが求められるようになってきた。そこで「必要な部分だけを重い防具で守り、あまり攻撃を受けない股下などは装甲を薄くする」ことや「梁状の構造物や波板・曲面による力学的に力が分散しやすい構造」が研究・採用された。

また受ける攻撃の種類を想定して、馬上槍試合用の、落馬すると自分では動けず馬上には数名の従者が押し上げることになるが、正面打撃だけを受け流すように設計されたプレートアーマーで背面装甲は薄いものや、ナイフや軽いの切っ先だけを受け止めることを目的にした鎖帷子なども生まれた。
近代兵器で求められる能力

最も基本的な装甲の形状は、板状の装甲材で保護対象を覆うことである。特に移動能力を備えた装甲戦闘車両戦闘艦軍用航空機では、防護性能を高めるために単純に装甲を厚くすれば装甲の重量によって運動性が損なわれるため、限られた重量内で最大の防護能力が求められる。21世紀現在の兵器の装甲は、できるだけ重量増加を伴わない防護力の強化策などが講じられている。

近代兵器では装甲の防護性能が向上したため、攻撃兵器も装甲板の広い面全体を破壊するよりごく狭い範囲にエネルギーを集中することで穿孔し、装甲板を貫いて内部に被害を与えることを目指すものが現れている。この裏面まで貫かれることを「貫徹」と呼ぶ。徹甲弾はこの貫徹効果を最大に求めた弾頭のことであるので、後述の通りこの被害を防ぐための研究も進んでいる。
工夫・技術

21世紀現在の兵器の装甲は、加害主体となる敵弾の運動特性・物性や、防護部位ごとの被弾頻度や脅威度の期待値、さらに利用可能な装甲技術での重量、製造コスト、加工容易性、性能の確実性、保守容易性、環境耐性と低劣化性、材料入手性、安全性などを総合的に考慮して選択される。

は代表的な装甲の材料であるが、一般に炭素を豊富に含んだ鋼鉄は硬いが脆くなる。炭素を少なくすれば柔らかくなり硬度は失われるが粘り強くなる。また、炭素以外にも多くの元素をに添加することで多様な合金が作られている。

敵弾の運動特性と物性として考慮すべき最も顕著なものが、20世紀末に登場したAPFSDS弾やHEAT弾のような弾種のユゴニオ弾性限界を利用した侵徹原理である。超高速で装甲に衝突した金属製の長い弾芯が、超高圧下で装甲と共に流体化し孔外に流出しながら細い孔を穿ってゆく過程を分析した上で、それを無効化する技術がいくつか開発され装甲に使用されている。

直接の防護性能には無関係であるが、多くの場合装甲によって左右される兵器の外形がステルス性能に大きく影響するため、防護性能や運動性能と共に装甲の形状も装甲設計での重要な要素の1つとなっている。

以下に単純な工夫から高度な技術まで示す。
モノコック構造

過去には兵器の外枠となる構造体とは別に装甲だけが付加されたこともあったが、全体の重量に考慮すれば装甲が車体や船体の構造体も兼ねた方が軽くなるため、装甲だけを付け加えることは少なくなり、モノコック構造がとられることが多い[注 1]
装甲厚の最適な配分

これらの装甲様式では、素材が同じであれば単純に装甲板が厚くなるほど強度が増す。しかし同時に装甲による重量も増えるため、移動体に装甲を施す場合には運動性、つまり移動速度とのバランスも考慮して、自ずと装甲の量には限界が存在する。これらの問題に関しては、一様に全体を装甲するよりもより打撃を受けやすい部位を集中的に装甲を厚くしそれ以外の装甲を薄くすることで総合的な防護能力を向上させるという思想がある。

戦車の装甲を例に挙げれば、戦車砲同士による撃ち合いで最も被弾しやすいのは正面装甲である。次に側面であり、後部や上面、下面は被弾が比較的少ない。

このため、全体に使用できる装甲の総重量を100とすると、正面に30、左右側面にそれぞれ20ずつ、残る後部と上面、下面には10ずつといった割合で、装甲の厚みに変化をもたせることで車体全体に均一に16-17程度の同じ厚みの装甲を施すよりも、同じ重量でより耐弾性に優れた戦車が作れる。
装甲の種類
装甲材の種類

装甲に適した素材への模索は常に続けられており、古い時代の木の板動物の皮といった素材から青銅に次いでなどと言った金属板へと切り替わっていき、近代兵器の分野では単純な装甲といっても鋼材としては特殊なものを使用し、コストを掛ける価値さえあればマンガンニッケルコバルトモリブデンタングステンなどの貴重で高価な金属を添加、表面に浸炭処理するなど製造に手間がかかる鋼材が使われることもある。

また航空機においては軽量化のためにジュラルミンなどアルミニウム合金が多用されるところを、対空砲火に晒される危険の大きい攻撃機では軽量化と防弾性の両立を求めチタン装甲板がパイロットを防護するために使用されたり、軽量戦車において軽量化による渡河性を重視してアルミ板装甲が使用されることもある。艦艇に使用される場合は莫大な量となるため主に鋼鉄が使われる。

以下、基本的に開発・採用された古い順に以下に示す。
鍛造装甲

鋼鉄の板を叩いて鍛え、同時に形を整える鍛造(たんぞう)によって造られた装甲である。鋳造に比べると不純物があまり入らず、冷間加工による硬度の強化も行えるが、複雑な形状は作れない。21世紀現在はあまり採用されていない[2]
鋳造装甲

炭素を豊富に含むことで融点を高め流動性を確保した鋳鉄を砂などで作った型に流し込んで造る鋳造(ちゅうぞう)によって造られる装甲である。鍛造に比べると不純物が入りやすく、硬くなりすぎ脆いので厚みのある形状でその不足を補う必要がある[注 2]

複雑な形状が容易に作れるので、古くは戦車の砲塔の丸い碗型の形状を1工程で造れるために多用されたが、21世紀現在はあまり採用されていない[2]
表面硬化装甲

表面硬化装甲は焼き入れなどの加熱処理によって、表面だけを高硬度の鋼鉄とするものである。装甲に小銃弾や小口径の砲弾から内部を防護する性能のみが求められていた時代には、装甲表面の硬さによってこれらの弾丸を破砕するように設計されていた。硬度の高い表面は避弾経始のような傾斜装甲に向いている。表面硬化の方法は、単に加熱による焼き入れと炭素を浸透させる浸炭装甲の2種類がある。
表面焼き入れ
表面焼き入れによる表面硬化装甲は、所定形状に加工済みの鉄鋼の板の表面だけを加熱することで焼き入れを行い表面だけを高硬度の鋼鉄とするものである。
浸炭装甲

浸炭装甲は、所定形状に加工済みの
低炭素鋼の板を加熱し、片面を高温炭素ガス雰囲気中に曝すことで表面から炭素を拡散浸透させて(浸炭処理)表面だけを炭素の豊富な高硬度の鋼鉄とするものである。同様にニッケルクロム鋼に浸炭処理を施すと表面に硬い炭化クロム (英語版)が析出し硬質の被膜を作る[3]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:58 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef