被曝
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

爆撃を受ける意味の「被爆」とは異なります。
放射線使用施設の警告看板

被曝(ひばく、radiation exposure)とは、人体が放射線にさらされることを指す[注釈 1]。「曝」が常用漢字でないことから「被ばく」とも表記される。

被曝は、放射線を受ける形態が外部被曝か内部被曝かでその防護方法が大きく異なる。
概要

放射線の歴史は1895年のヴィルヘルム・コンラート・レントゲンの X 線の発見に始まるが、放射線の利用とともに、人体が放射線を浴びること、被曝(radiation exposure)によって様々な放射線障害[注釈 2]が発生することが徐々に認識されていった。詳細は「放射線障害」を参照

原子爆弾など戦争兵器にも用いられ、健康被害をもたらす放射線被曝はできる限り避けねばならない、しかしながら、放射線治療などに用いられる放射線技術は大きな利益をもたらす技術である。そこで、放射線技術による利益を享受しつつ、被曝に伴う放射線障害を防止することを目的とした放射線防護(radiation protection)の概念が、放射線障害の認識と共に発達してきた。今日においては以下の目標が掲げられている[2][3]
放射線防護の目標

利益をもたらすことが明らかな放射線被曝を伴う行為を、不当に制限することなく、人の安全を確保すること

個人の確定的影響の発生を防止すること[注釈 3]

確率的影響の発生を制限すること[注釈 4]

放射線防護にあたって最も重要であるのは放射線源から被曝を受ける形態であり、次の二つに分類される[注釈 5][注釈 6]
外部被曝(external exposure、体外被曝)
体の外部にある放射線源からの放射線被曝
内部被曝(internal exposure、体内被曝)
経口摂取、吸引などにより体内に取り込んだ放射性物質による被曝

点放射線源からの外部被曝の場合、最も単純な防護方策はその点線源との距離を大きく取ることであるが、同じ被曝でも空気中に放射性物質が拡散してしまい吸引による内部被曝が疑われる場合は、放射線防護策としては全く異なる方法(マスクの着用など)を取らなくてはならない[注釈 7]

放射線防護策を検討・実施するにあたって場所の放射線量[注釈 8]および被曝をしている個人の線量[注釈 9]を計測(モニタリング)することは重要である。放射線防護を行う(確率的影響の発生リスク[注釈 10]を人々が容認可能なレベルに抑える)にあたって基本的尺度となる線量概念が実効線量(単位:シーベルト、記号:Sv)であり、個々人の被曝した実効線量は、定められた実効線量限度以下に抑えられる[注釈 11][注釈 12]

なお、低線量の放射線被曝による健康被害については各種議論がある。詳細は「低線量被曝問題」を参照
被曝の形態とその防護放射線の透過能力:アルファ線(原子核)は紙1枚程度で遮蔽できる。ベータ線(電子)は厚さ数mmのアルミニウム板で防ぐことができる。ガンマ線(電磁波)は透過力が強く、コンクリートであれば50 cm、であっても10cmの厚みが必要になる。中性子線(中性子)は最も透過力が強く、やコンクリートの厚い壁に含まれる水素原子によってはじめて遮断できる。

放射線は、放射線物質(放射線源)あるいは放射線発生装置より発生する。放射線源が密封線源[注釈 13]の場合、被曝は身体の外部からの被曝である外部被曝(external exposure)だけであるが、非密封線源[注釈 14]の場合、外部被曝に加えて身体の内部に放射線物質が入り込むことによる被曝である内部被曝(internal exposure)も考慮しなくてはならない。
外部被曝(external exposure)

外部被曝として問題になる線種はガンマ線X線ベータ線中性子線[注釈 15]、これら放射線を防護する方法には次の三つがある[7]
密封線源の三原則

線源と人体との間に遮蔽物を置く(ガンマ線[注釈 16]、ベータ線[注釈 17]、中性子線[注釈 18]かで遮蔽物として効果的なものは異なる)

線源と人体の距離を大きく取る[注釈 19]

放射線を受ける時間を短くする[注釈 20]

内部被曝(internal exposure)

放射性物質が空気中などに拡散して存在している場合、その放射性物質が体内に入り込むことによる内部被曝の恐れが生じる。そのため、内部被曝については放射性物質を体内に取り込まないような防護が基本となる。体内に取り込まれる経路としては、次の三つがある[8][9]
非密封線源が体内に取り込まれる経路

呼吸器を通しての摂取(吸入)
放射性物質で汚染した空気を吸い込むことによって、気道や肺胞を通して体内に放射性物質が侵入することを言う。マスクの着用などで防護できる[注釈 21]
口、消化器を通しての摂取(経口摂取)
放射性物質で汚染された水や食物を摂取することで、胃や小腸などの消化管から体内に放射性物質が侵入することを言う。基準値を超える放射能を持つ食品を摂取しないことで防護できる[注釈 22][注釈 23]
皮膚、特に傷口を通しての摂取
皮膚の毛穴や汗腺または皮膚にある傷から放射性物質が侵入することを言う[注釈 24]。放射性物質と接触する皮膚表面に傷があるときは、放射性物質の取り扱いを避けることで防護できる[注釈 25]
内部被曝の特徴

内部被曝をした場合、すなわち一度体内に放射性物質が取り込まれた場合、その取り込まれた放射性物質を除くには、物理的減少(放射性崩壊)と共に生体機能の代謝による排出を待つよりほかない。その場合、物質により放射性物質としての半減期に生物学的な半減期が加わるために、内部被爆の線量の計算には多くの困難がある。詳細は「半減期#生物学的半減期と実効半減期」を参照

体内に取り込まれた放射性物質がどのように振舞うか(体内のどの部位に沈着するか)は、その元素の化学的性質によって異なる。たとえばヨウ素131は吸気から、皮膚から、食事や飲水からなど多くの経路で内部被爆の推定には難しさがある。

ヨウ素は選択的に甲状腺に取り込まれ沈着する。甲状腺には多くのチログロブリンの蓄積があり、それがヨウ素と結合している量も変動が大きい。たとえば海産物を多く摂取する日本人の場合はヨウ素の飽和量が高いといわれるが、海から遠く離れた地域の住人はヨウ素の飽和度が低いといわれる。このように、甲状腺に蓄積するヨウ素131の量については、被爆にいたる経路が複数であること、また甲状腺のヨウ素の飽和度などにも個人差があり、また内部被爆の影響が長時間にわたると考えられる。このため、多くの仮定と推定により50年間にわたる生体の内部被爆量を預託等価線量として推定するが、その算出には多くの議論がある。

したがって内部被爆防護の立場では、最初に飛散するヨウ素131が住人に到達する前のなるべく早い段階でヨウ素剤を投与し、甲状腺のヨウ素飽和度をあげて、ヨウ素131の蓄積を減らすことが最も重要である。このために原子量発電所の近傍や作業にあたる自治体、警察、軍隊組織などにヨウ素剤の蓄積されているが、わが国では住民にあらかじめ配布されていないので、原子量発電所の事故などの混乱時に短時間にヨウ素剤を配布することが困難であるとの指摘がある[注釈 26]アルカリ土類金属であるストロンチウム中の同じくアルカリ土類金属であるカルシウムと置き換わって体内に蓄積することが知られている[16]。一方で、カリウムセシウムは水に溶け込み全身の細胞内に広がる[注釈 27]。このように、放射性物質の種類によって体内に摂取された後に存在する場所が変わる。体内に入ってしまった放射線物質を検査する一般的な方法として、ホールボディカウンターによってガンマ線を測定・分析する方法がある。ヨウ素131は半減期が短いため早期に測定しないと正確な値が測定できない。なお、この装置はガンマ線が人体を透過することを利用したものであるため、ガンマ線を出さない核種の測定は不可能である[注釈 28]
放射線防護策の選定と実施

人工的に発生させた放射線(人工放射線)は人間の諸活動に伴って発生する放射線であり、全ての被曝が放射線防護の対象となる[注釈 29]。そこで、放射線被曝を伴う行為を導入・実施などする際は、放射線防護の目標達成のため放射線防護体系(system of radiological protection)の三原則を遵守する必要がある[21]
放射線防護体系の三原則[22][23][24][注釈 30]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:110 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef