血液脳関門
[Wikipedia|▼Menu]
ラットの血液脳関門の電子顕微鏡画像

血液脳関門(けつえきのうかんもん、英語: blood-brain barrier、略称:BBB)は、血液(そして脊髄を含む中枢神経系)の組織液との間の物質交換を制限する機構である。これは実質的に「血液と脳脊髄液との間の物質交換を制限する機構」=血液脳髄液関門 (blood-CSF barrier, BCSFB) でもあることになる。ただし、血液脳関門は脳室周囲器官松果体脳下垂体、最後野など)には存在しない[1]。これは、これらの組織が分泌するホルモンなどの物質を全身に運ぶ必要があるためである。
歴史

最初に血液脳関門の存在を示唆した実験は17世紀、イギリスの生理学者であるハンフリー・リドリー(英語版)によって行われた。彼は動物に静注した水銀が脳内に蓄積されないことを脳血管の密着性が他の血管と大きく異なるからと考えた[2]。かつては19世紀後半にドイツの細菌学者のパウル・エールリッヒが血液脳関門の概念の創始者とされていた[3]。彼はウサギの血管にアニリンを注射すると、多くの臓器の組織は染色されるが中枢神経だけは染色されないことに気がついた。パウル・エールリッヒは自身の論文では脳組織が染色色素を吸着する成分をもたないため染色されなかったと解釈した。そのため、パウル・エールリッヒはむしろ血液脳関門の存在に否定的であったと解釈できる。パウル・エールリッヒの弟子であるエドウィン・ゴールドマンはトリパンブルーをクモ膜下に投与すると中枢神経である脊髄は染まるが他の末梢の臓器が染まらないことを見出した[4]。このとき両者との境界には膜のようなものは発見されず、血管がその役割を担っているものと推測された。他にも複数の科学者らによる一連の実験から血液脳関門の概念が作られたと考えられる[5]

最終的に、単糖類、アミノ酸などの生体分子、そして酵素などの生体高分子の脳内での透過性が明らかにされ、血液脳関門の概念が確立したのは1960年代以降、電子顕微鏡を用いて脳内の各分子の移行を形態的に観察した研究がもとになっている。その後、血液脳関門は単なる障壁ではなく、脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産出された不要な物質を血中に排出する「動的インターフェース」であるという新しい概念に変わっている[6]
構造

血液脳関門は脳の微小血管に局在し3種類の細胞と2種類の基底膜から構成される[7]。また血液脳関門が存在しない部位として脳室周囲器官が知られている。
内皮細胞

血液脳関門の最内層に位置し、脳にあって常時血液成分と直接的な接触をもつ唯一の細胞である。BNB(Blood-Neural Barrier、血液神経関門)を構成する微小血管内皮細胞と同様に4つの特徴が知られている。まず無窓である。そしてピノサイトーシスが極めて少ない、隣接する内皮細胞間で高度に複雑で連続性のあるタイトジャンクションをもつ。また各種トランスポーター、レセプターを発現し、特有の物質輸送系をもつ。無窓であり、ピノサイトーシスが少ないことから経細胞経路が制限され、タイトジャンクションにより傍細胞経路が制限されている。
周皮細胞(ペリサイト)

内皮細胞に接してすぐ外側の1枚の基底膜を介して位置する不整形、多角形の細胞である。内皮細胞周皮細胞は共通の基底膜で覆われる。
基底膜

内皮細胞と周皮細胞は1枚の基底膜で覆われており、この1枚目の基底膜の外側にはグリア限界膜とよばれる第二の基底膜が存在する。この2枚の基底膜は構成分子が異なっているが毛細血管レベルでは2枚が融合して一続きのgliovascular membraneを形成している。後毛細血管細静脈のレベルになるとこの2枚は分離し、その間隙には脳脊髄液が灌流して血管周囲腔となる。
星状膠細胞

グリア限界膜の外側に接して星状膠細胞の足突起がならぶ。
脳室周囲器官

脳室周囲器官は血液脳関門が存在しないことから、その中の細胞は様々な生体物質の変化や侵入に直接暴露されているため「脳の窓」と呼ばれている。主要な構造器官には脳弓下器官(subformical organ)、交連下器官(subcommissural organ)、松果体(pineal body)、最後野(area postrema)、正中隆起(median eminence)、神経下垂体(neurohypophysis)、血管器官(organum vasculosum)があげられる。脳室周囲器官は自ら分泌するホルモンなどの物質を全身に運ぶ必要があるため脳室周囲器官では血液脳関門が発達していない。脳室周囲器官は血管に富み、脳内への選択的物質輸送を担う有窓性毛細血管が密集するとともに脳室側から脳膜側に長い突起を伸ばした特殊な上衣細胞がある。詳細は「脳室周囲器官」を参照
機能分子

血液脳関門の機能分子はタイトジャンクション構成分子、トランスポーター細胞接着分子に分類される。
タイトジャンクション構成分子

血液脳関門のタイトジャンクション構成分子にはクローディン(CLDN)ファミリー、TAMPファミリー(TJ-associated MARVEL protein family)、アンギュリンファミリー、JAM[要曖昧さ回避]ファミリー(Junctinal adhesion family)、ZO[要曖昧さ回避]ファミリー(Zonula occludens)などからなる。
クローディン(CLDN)ファミリー

クローディンファミリーはヒトでは27種類の4回膜貫通型蛋白質で構成されている[8]。一次構造ではN末端からTM1、ECS1、ECH、TM2、TM3、ECS2、TM4と配列している[9]。クローディンファミリーは同一細胞膜上、および向かい合う細胞膜上のクローディンファミリー同士で相互作用する性質がある。この相互作用がタイトジャンクションを生み出すと考えられている。同一細胞膜上のクローディンファミリーの相互作用をシス相互作用といい、向かい合う細胞膜上のクローディンファミリーの相互作用をトランス相互作用という。クローディンファミリー間の相互作用に必須な領域はアミノ酸配列の保存性の低い領域であり、これらの違いがクローディン間の相互作用の違いを生み出している。脳微小血管内皮細胞ではクローディン1、クローディン3、クローディン5、クローディン12の発現が確認されている[10][11]。脳微小血管内皮細胞でのクローディン1の発現は特定の抗体がクローディン1とクローディン3で交差反応性を示すため論争されている[10][12]。single-cell RNA sequenceの解析結果では正常状態のマウスの脳内血管内皮細胞ではクローディン5、クローディン12、クローディン25のmRNAの発現が確認されたという報告もある[13][14]。クローディン5以外のクローディンファミリーが脳微小血管内皮細胞に発現していると考えられているがそれがどのクローディンか不明な点も多い[15][16]
クローディン5(CLDN5)

クローディン5は血液脳関門のバリアー機能の中核を担うと考えられている[17][18]。クローディン5は血液脳関門の機能に不可欠な分子でありその発現量が血液脳関門のバリアー強度を決定するというのが定説となっている。その根拠として脳微小血管内皮細胞のクローディン5のmRNA発現量が高いこと[19][20]、クローディン5ノックアウトマウスのマウスが分子量選択的なのバリアー機能低下を示すこと[15]、クローディン5が強いシス相互作用とトランス相互作用を示すことが挙げられる[21]

具体的には脳微小血管内皮細胞のクローディン-5 mRNAレベルは、クローディン1、クローディン3またはクローディン12の mRNAと比較して600 - 700倍高い[22][23][20]。2003年に新田、月田らはクローディン5のノックアウトマウスを作成し、その血液脳関門の透過性を検討した[15]ノックアウトマウス(ホモ接合体)は原因不明であるが出生後10時間以内に全例死亡した。電子顕微鏡で形態評価を行うとクローディン5のノックアウトマウスにもタイトジャンクションストランド形成が確認され、脳血管のネットワークや組織構築は維持された。しかし小分子のトレーサーの通過は正常型マウスと大きく異なった。正常マウスは分子量443D、742D、1900Dのトレーサーのいずれも通過しなかった。しかしクローディン5ノックアウトマウスでは分子量443D、742Dのトレーサーは通過したが、1900Dのトレーサーは通過しなかった。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:147 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef