血液ガス
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事には複数の問題があります。改善ノートページでの議論にご協力ください。

出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2014年6月)


出典脚注などを用いて記述と関連付けてください。(2012年2月)
出典検索?: "血液ガス分析" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL

この記事で示されている出典について、該当する記述が具体的にその文献の何ページあるいはどの章節にあるのか、特定が求められています。ご存知の方は加筆をお願いします。(2014年6月)

血液ガス分析(けつえきガスぶんせき、英語:blood gas analysis, BGA)とは、血液中に含まれる酸素二酸化炭素の量、あるいは pH を測定する検査。通常は動脈血を測定する。
目的

主な目的は次の 3 つである。
呼吸ガス交換)の状態を調べる。

肺における酸素化を調べる。

体内の塩基平衡を調べる。

ヒトを始めとする高等生物は、生命活動に必要なエネルギーを得るために体内で酸素を消費して二酸化炭素を発生させている。体内で発生した二酸化炭素は血液(静脈血)に乗ってに運ばれる。肺では呼吸によって血液中の二酸化炭素を放出する一方、酸素を血液中に取り込んでいる。こうして肺を通過した後の血液は酸素を豊富に含み、動脈血と呼ばれる。この血液を採取して酸素と二酸化炭素の量を調べることにより、肺が正常に機能しているかどうかがわかる。換気の指標としては PaCO2 が、酸素化の指標としては PaO2AaDO2 がよく利用される。これらの値を正しく解釈するために呼吸数の併記が必要である。

生命活動により体内では様々な有機酸が合成されるが、調節機構のはたらきにより、体内環境は常に pH 7.4 前後に保たれている。この調節機構が破綻して体内に酸が蓄積すると(例:腎不全など)体内の酸・アルカリのバランスが崩れ、それを代償するために呼吸回数が増えて二酸化炭素の量が減ることがある(二酸化炭素も「炭酸」という酸である)。動脈血中の二酸化炭素の量と pH を調べることにより、間接的に体内の酸・塩基平衡を知ることができる。
検査対象

主なもののみ列挙すると呼吸不全がある患者、意識障害がある患者、ショック等、重篤な状態にある患者、呼吸機能を精査する必要のある患者(手術前後の患者など)があげられる。呼吸状態の評価と酸塩基平衡の評価が必要と判断されれば必ずといってよいほど行われる検査である。
採血法

大腿動脈(鼠径部)、上腕動脈(肘)もしくは橈骨動脈(手首)などから採血する。採血管(シリンジ)には抗凝固薬が添加されており、採った血液の凝固を防ぐ。
測定法

採血後直ちに測定を行うべきである(採血後時間が経つと値が変化するため)。血液ガス分析器にて自動測定される。また、採血シリンジ内に気泡がある場合、ヘンリーの法則に従い、pO2 は大気のそれ (158 mmHg) に近づき、pCO2 は下がっていくので、出来るだけ検体が空気に触れないようにする。

直接測定するもの

酸素分圧、炭酸ガス分圧、pH


計算して求めるもの

酸素飽和度、重炭酸イオン、BE


他の成績を加えて求めるもの

AaDO2、シャント率、酸素含量、心拍出など


基準値(正常範囲)詳細は「血液検査の参考基準値」を参照

基準値は施設により、また病状により異なるので、ここに示すのは参考値である。

動脈血酸素分圧 (PaO2): 80 ? 100 Torr

動脈血二酸化炭素分圧 (PaCO2): 35 ? 45 Torr

pH: 7.36 ? 7.44

重炭酸イオン (HCO3-): 22 ? 26 mEq/L

塩基余剰 (BE): -2 ? +2 mEq/L

SaO2: 93 ? 98 %

人工透析の患者などでは静脈血で血液ガス分析を行うことがある。静脈血は組成が部位によって異なるので一概には言えないが、大腿静脈や肘静脈では PaO2 は約 40 Torr で PaCO2 は約 46 Torr が正常である。pH は変化してしまい、十分な血液ガス分析はできなくなるが、 HCO3- は測定できるので代謝性アシドーシスの治療効果判定などは行うことができる。日本では何故か、血液生化学の項目にHCO3- の項目がないので苦肉の策である。

SaO2(%)PaO2(mmHg)
3020
6030
7540
9060
97.5100

酸素解離曲線より、SaO2 90% は PaO2 60 mmHg、SaO2 60% は 30 mmHg に相当する。これを 3・6・9 の法則という。それ以外に SaO2 97.5% は PaO2 100 mmHg、SaO2 75% は PaO2 40 mmHg、SaO2 30% は PaO2 20 mmHg を覚えておけば、ほとんどは事足りる。SaO2 はあくまでも血液ガスから求めるが、非観血的な測定法がパルスオキシメーターによる SpO2 である。これは色素の波長分析で行っているので一酸化炭素中毒などでは測定値との乖離がみられる。
結果

酸素のガス交換は肺胞壁の状態に強く影響される一方、二酸化炭素はあまり影響を受けない。すなわち、PaO2 異常→肺胞障害、PaCO2 異常→換気障害と考えることができる。
pH

血清pHが 7.4 未満になった(低下した)状態をアシデミア、7.4 より上になった(上昇した)状態をアルカレミアと言う。そして、平衡を酸性側にしようとする状態をアシドーシス(en:acidosis)、平衡を塩基性側にしようとする状態をアルカローシス(en:alcalosis)と言う。基本的に代償機構ではアシデミアがアルカレミアになるような大きな代償は起こらない。アシデミアがある時点で、呼吸性アシドーシスか代謝性アシドーシス、あるいはその両方が最初に起こったと考えてよいと言われている。
PaCO2

PaCO2 は肺胞換気量の指標であり、他の要因に左右されない。PaCO2↑とは肺胞低換気を示し、具体的には換気障害(呼吸停止、気管内異物、気管支炎気管支喘息慢性閉塞性肺疾患など)や循環障害(心停止肺梗塞など)でおこる。また二次性変化としては代謝性アルカローシス(下記参照)(pH 補正のため代償性に CO2 が上昇する)でも起こりえる。PaCO2↓は肺胞過換気を示し、最も多いのは過換気(過換気症候群、PaO2 低下による過換気など)によるものである。気をつけてほしいのは肺胞過換気でも PaO2↓となる病態は数多くある。こういったデータを見たら、過換気にも関わらず酸素のガス交換ができない病態と考える。具体的には痰づまりで閉塞性無気肺が起こったときにみられる所見である。酸素投与や理学療法による閉塞の解除が必要である。PaCO2↑で PaO2↓ならば、呼吸が止まりかけているということで人工呼吸器の適応を考えなければならない。二次的には代謝性アシドーシス(下記参照)(pH補正のため代償性に CO2 が低下する)でも起こりえる。
PaO2

PaO2 は気圧、吸気酸素濃度 (FiO2)、肺胞換気量、換気血流比、シャント、拡散障害で決定される。PaO2↓となることに病的な意義がある。酸素投与をしていれば上昇するのでどれくらいの FiO2 かは常に考えなければならない。これだけの FiO2 にしては低値であるというのも所見である。具体的には換気障害、循環障害、肺胞障害(肺炎など)で低下しうる。これと PaCO2 を組み合わせて病態を予測していく。
AaDO2

酸素に特有の事項として、肺胞レベルのガス交換が重要である。二酸化炭素においては、拡散能が優れている(酸素の約 20 倍)ために肺胞気中の分圧と動脈血中のそれが等しくなり、PACO2 = PaCO2 が成立した。これに対して、拡散能が比較的低い酸素においては、肺胞気中の分圧と動脈血内のそれのあいだに較差が生じることとなり、これを肺胞気・動脈血酸素分圧較差 (AaDO2) と呼ぶ。AaDO2 の算出式は AaDO2 = PAO2 - PaO2 であり、正常は 10 Torr 以下である。20 Torr もあればかなり息苦しいと考えられる。

AaDO2 は、肺胞レベルのガス交換要因によって左右される。その要因としては下記のようなものがある。
換気・血流比の不均衡分布
低酸素血症の多くは換気・血流比の不均衡な分布による、AaDO2 の増大である。換気・血流比を測るには吸気と血液両方にアイソトープを入れてコンピュータ解析をするという結構大変な検査である。
ガス拡散能力
間質性肺炎や、肺水腫のような疾患では拡散障害が起こるといわれている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:59 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef