肥料の三要素
[Wikipedia|▼Menu]

肥料の三要素(ひりょうのさんようそ、: three main macronutrients)とは、植物栄養素としての窒素リン酸カリウムのことである。これらは、植物がその成長のために多量に要求し、かつ、植物体を大きく生育させるため、農業上特に肥料として多く与えることが望ましい。
窒素

窒素は、主に植物を大きく成長させる作用があり、特に葉や茎を大きくすることから葉肥(はごえ)とも呼ばれる。根から吸収される必須栄養素の中で、最も多量に要求される。植物が利用できる窒素の土壌中含量が、植物の生産性を決める主要な因子であるとされる。植物の原形質の乾燥重量の40 - 50 %は、窒素化合物である[1]。植物の中でも、葉や茎を食用とする葉菜類は、特に窒素を多量に必要とする。
生理機能

全ての生物において窒素はその肉体の重要な構成成分である。窒素を含む植物化合物は、タンパク質を構成するアミノ酸DNARNAヌクレオチドを構成する核酸塩基膜脂質であるホスファチジルエタノールアミングルコサミンなどのアミノ糖アルカロイドリグニンなどの二次代謝産物など様々である。葉においてタンパク質の多くは葉緑体に含まれ、窒素の摂取量は光合成の活発さを規定する。適正な範囲内であるならば、窒素を多く与えるほどに葉緑体は増加し、収量が向上する。
土壌中の形態

土壌中の形態は無機態と有機態のいずれかである。通常、窒素の無機態はアンモニウムイオンNH4+と硝酸イオンNO3?である。また、しばしば亜硝酸菌によって土壌のアンモニウムイオンは亜硝酸に変換される。有機態はバイオマス土壌有機物であるが、植物が直接的に利用可能な有機態窒素は、無機態が腐植と会合した形態である。腐植以外の有機態窒素は、微生物に無機化されて無機態にならなければ植物に利用されない。

正電荷のアンモニウムイオンは土壌中で負電荷粘土鉱物に保持されている。対して、負電荷の硝酸イオンは他の負電荷に保持されないため、土壌粒子に吸着されにくい。水に流され、土壌中を容易に移動する。

水田のような、酸素が少ない土壌環境ではアンモニウムイオンが主要な形態である。これは、水田土壌では好気性硝化細菌が不活性であり、アンモニウムイオンはこの細菌による硝酸イオンへの変換を受けないためである。水田土壌でのアンモニウムイオンの吸着はラングミュア及びフロイントリッヒの吸着等温式で表すことができる[2]。普通の畑では硝化細菌が活発であり、遊離のアンモニウムイオンは早期に硝酸イオンに還元される。この還元の過程でプロトンが放出され、このプロトンは、粘土鉱物に吸着しているカルシウムイオンとイオン交換反応を起こす。カルシウムイオンは硝酸イオンの対イオンとなる。このため、硝酸イオンは更に土壌に吸着されにくくなる。

アンモニウムイオンと硝酸イオンのどちらも植物の窒素源となるが、どちらをより多く摂取するかは植物種によって異なる。基本的には硝酸イオンをより好む。しかし、茶や稲はアンモニウムイオンを主に取り込む。これは、茶が好む酸性土壌[3]や、稲が栽培される水田土壌では硝化細菌は不活性となるためである。

無機態窒素のどちらが植物の生育に適切であるかは土壌中のpHや、2つのイオンの濃度バランスにも影響される。生育に至適な土壌pHは植物種ごとに決まっているが、アンモニウムイオンはpHを上げ、硝酸イオンはpHを下げる。さらに、アンモニウムイオンは陽イオンであるため、高濃度では植物によるカリウムやマグネシウムの吸収を拮抗阻害する。一方、硝酸イオンは陰イオンであるのでカルシウムやカリウムの対イオンとなり、これらの栄養素の吸収を促す。
アンモニウムイオンの吸収

アンモニウムイオンはアンモニウムイオン輸送体により吸収される。シロイヌナズナでは6種類の輸送体の遺伝子が同定された(下表)。このうち、AtAMT1;1?3の遺伝子は窒素飢餓で発現し、アンモニウムイオン吸収の90 %を担う。稲では10種類のアンモニウムイオン輸送体の類似遺伝子が発見されている。OsAMT1;2遺伝子は根の表層細胞と中心柱で強く発現している。アンモニア吸収や導管への取り込みに関わっていると見られている。

アンモニウムイオン輸送体輸送体発現部位Km[要曖昧さ回避](μM)推定される機能
AtAMT1;1根毛、皮層50外界から根への輸送、根から地上部への長距離輸送、再転流[4]
AtAMT1;2根の内鞘、皮層234アポプラスト経由の輸送
AtAMT1;3根毛、表皮61外界から体内への輸送
AtAMT1;4花粉17花粉細胞での窒素代謝[5]
AtAMT1;5根毛、表皮5センサー
AtAMT2;1[6]まばらに広く分布不明不明

硝酸イオンの吸収

植物は、硝酸イオンへの親和性が異なる2種類の硝酸イオン輸送系を持つ。両方ともにその遺伝子は、NRT1とNRT2と呼ばれる遺伝子ファミリーに属す。また、細胞内外のpHの差を利用して1モルの硝酸イオンを2モルのプロトン共輸送する。

高親和性輸送系[ : high-affinity transport system: HATS ]は硝酸イオンに対して0.01 - 0.1 mMのKm値を持ち、低濃度領域(0.5 mM以下)での吸収に関わる。HATSには硝酸イオン濃度によってその発現頻度が調節されているものと、濃度に関係なく一定の頻度で発現しているものがある。一方、高濃度領域(0.5 M以上)での吸収には低親和性輸送系[ : low-affinity transport system: LATS ]が主に担う。
地上部への輸送

環境から根へと取り込まれた窒素は導管によって地上部へと輸送される(長距離輸送)。硝酸イオンの一部は長距離輸送される前にアミノ酸にまで代謝される。したがって、導管中の形態は主にアミノ酸アミド、または硝酸イオンである。アミノ酸への代謝に関わるグルタミン合成酵素を阻害すると長距離輸送は完全に阻害される。少数の植物種(インゲンやエンドウなど)には導管液にウレイドも含まれる。アンモニウムイオンはほとんど検出されない。実際の導管液の組成は植物種や硝酸イオンの吸収量で変化する。
代謝
硝酸イオンの同化

硝酸イオンは植物体内で硝酸還元酵素(NR)によって亜硝酸イオンに還元される。一般に、NR活性はホウレン草小松菜といった双子葉植物葉菜類で高く、イネ科植物で低い。 NO 3 − + NAD ( P ) H + H + + 2 e − ⟶ NO 2 − + NAD ( P ) + + H 2 {\displaystyle {\ce {NO3- + NAD(P)H + H^+ + 2e^- -> NO2^- + NAD(P)+ + H2}}}

植物のNRには2種類ある。そのうちの一つ、NADH-NRはNADHだけから還元反応に必要な電子を調達する(NADHのみを電子供与体とする)[7]。ほとんどすべての植物の根と葉にはNADH-NRのみが存在する。もう一つのNR、NAD(P)H-NRはNADHとNADPHの両方を電子供与体として利用することができる。トウモロコシや大麦などのイネ科や大豆などのマメ科植物の根で発見されている[8][9][10]大麦の場合、NAD(P)H-NR活性はNADH-NR活性の10 %程度に過ぎない。

亜硝酸イオンは亜硝酸還元酵素(NiR)によってアンモニウムイオンまで還元される。この還元反応は地上部において葉緑体で、地下部においてプラスチドで行われる。 NO 2 − + 6 Fd {\displaystyle {\ce {NO2^- + 6Fd}}} (還元型) + 8 H + ⟶ NH 4 + + 6 Fd {\displaystyle {\ce {+ 8H+ -> NH4+ + 6Fd}}} (酸化型) + 2 H 2 O {\displaystyle {\ce {+ 2H2O}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:79 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef