翻訳_(生物学)
[Wikipedia|▼Menu]
翻訳の開始と伸長段階を簡単に解説する。RNA塩基、リボソーム、tRNA、アミノ酸を拡大している。
(上) 開始段階: メチオニンとそのアンチコドンを輸送するイニシエーターtRNAが、リボソームのP部位でmRNAの開始コドンAUGと遭遇する。
(下) 伸長段階: リボソームが5'から3'方向に移動する。そのとき、ペプチド結合でP部位のtRNAに結合したアミノ酸がA部位のtRNAに結合し、mRNA上のコドンに基づいて長いアミノ酸鎖を合成する。リボソームが移動する際、tRNAはEサイトを通ってリボソームから離れ、新しいtRNAがA部位に入って、アミノ酸鎖の伸長を継続する。翻訳の3つの段階を示す。
@開始 (Initiation): ポリメラーゼがDNA鎖に結合してから、リボソーム小サブユニットがDNAに結合するまで。
A伸長 (Elongation): 大サブユニットが結合すると伸長が開始する。
B終止 (Termination): 伸長の過程が終了する。

分子生物学遺伝学において、翻訳(ほんやく、: translation)とは、細胞質または小胞体リボソームがタンパク質を合成する過程であり、これは細胞のDNAを元にRNAが合成される転写に続くものである。この一連の過程は、遺伝子発現と呼ばれる。
概説

翻訳では、メッセンジャーRNA(mRNA)が核の外にあるリボソームで解読され、特定のアミノ酸鎖(ポリペプチドともよぶ)が作られる。その後、ポリペプチドは活性タンパク質折り畳まれ細胞内でその役割を果たす。リボソームは、mRNAコドン相補的なtRNAアンチコドン配列の結合を導くことによって解読を進める。転移RNA(tRNA)は特定のアミノ酸を輸送し、mRNAがリボソームを通過して「読み取られる」ときにそのアミノ酸がポリペプチドに連結される。

翻訳は次の3つの段階で進行する。
開始: 標的mRNAの周囲にリボソームが集結する。最初のtRNAがmRNAの開始コドンに結合する。

伸長: リボソーム小サブユニット(英語版)によって確認された(収容)tRNAは、運んだアミノ酸をリボソーム大サブユニット(英語版)に移し、その前に収容されたアミノ酸に結合する(ペプチド転移)。その後、リボソームは次のmRNAコドンに移動してプロセスを継続し(転座)、アミノ酸の鎖を形成する。

終結: 終止コドンに到達すると、リボソームはポリペプチドを放出する。リボソーム複合体はそのまま残り、次に翻訳されるmRNAへ移動する。

原核生物細菌および古細菌)の場合、翻訳は細胞質基質で行われ、リボソームの大サブユニットと小サブユニットがmRNAに結合する。真核生物の場合、翻訳は細胞質内または小胞体の膜を越えて共翻訳転座(英語版)と呼ばれる過程で行われる。共翻訳転座では、リボソームとmRNAの複合体全体が粗面小胞体(ER)の外膜に結合し、新しいタンパク質が合成されてER内に放出される。新しく作られたポリペプチドは、将来の小胞輸送や細胞外への分泌のためにER内に貯蔵されるか、または直ちに分泌される。

転移RNA(tRNA)、リボソームRNA(rRNA)、核内低分子RNA(snRNA)など、多くの種類の転写RNAはタンパク質に翻訳されない。

多くの抗生物質は、翻訳を阻害することで働く。たとえば、アニソマイシン(英語版)、シクロヘキシミドクロラムフェニコールテトラサイクリンストレプトマイシンエリスロマイシン、およびピューロマイシンがある。細菌などの原核生物のリボソームは真核生物のリボソームと構造が異なるため、抗生物質は真核生物の宿主細胞に害を与えることなく、感染した細菌を特異的に標的にすることができる。
基本的な機構詳細は「細菌の翻訳」、「古細菌の翻訳(英語版)」、および「真核生物の翻訳」を参照リボソームがタンパク質を翻訳して小胞体に分泌する活動を示すアニメーション。アミノ酸を輸送するtRNAは濃い青色で表されている。tRNAの三次構造。CCA尾部は黄色、アクセプターステムは紫、可変ループはオレンジ、Dアームは赤、アンチコドンアームは青、アンチコドンは黒、Tアームは緑で表示。

タンパク質を生成する基本的な過程は、タンパク質の末端にアミノ酸を1つずつ付加することである。この働きは、リボソームによって行われる[1]。リボソームは、小サブユニットと大サブユニットの2つのサブユニットから構成されている。これらのサブユニットは、mRNAがタンパク質に翻訳される前に一体となり、翻訳が行われてポリペプチドが生成される場所を提供する。ポリペプチドに付加するアミノ酸の種類と配列はmRNA分子によって決定される[2]。付加された各アミノ酸は、mRNA上の3連ヌクレオチド配列(トリプレットまたは三連符という)と符合する。このようなトリプレットの組み合わせ可能なそれぞれについて、対応するアミノ酸が認められる。鎖に追加された連続したアミノ酸は、mRNAの連続したヌクレオチド・トリプレットに符合する。このようにして、mRNA鎖のヌクレオチド配列が鋳型となり、生成されるアミノ酸鎖のアミノ酸の配列を決定する[3]。アミノ酸の付加はペプチドのC末端で起こるので、翻訳はアミンからカルボキシルへ向かうと呼ばれる[4]

リボヌクレオチドの配列としてコード化された遺伝情報は、mRNAによって染色体からリボソームへ送られる。リボヌクレオチドは、コドンと呼ばれるヌクレオチド・トリプレットの配列として翻訳機構によって読み取られる。これらのトリプレットはそれぞれ特定のアミノ酸をコードしている。

リボソーム分子は、このコードを特定のアミノ酸の配列へ翻訳する。リボソームは、rRNAとタンパク質からなる多サブユニット構造体であり、アミノ酸をタンパク質に組み立てる「工場」の役割を担っている。tRNAは、アミノ酸をリボソームへ輸送する小さなノンコーディングRNA鎖(74-93ヌクレオチド)であり、アミノ酸が結合する部位と、アンチコドンと呼ばれる部位を持っている。アンチコドンはRNAのトリプレットで、積荷のアミノ酸をコードするmRNAトリプレットに相補的になっている。

酵素であるアミノアシルtRNA合成酵素は、特定のtRNAと、そのアンチコドン配列に対応するアミノ酸との結合を触媒する。この反応の産物はアミノアシルtRNAである。細菌の場合、このアミノアシルtRNAは転写因子EF-Tuによってリボソームへ輸送され、そこでmRNAコドンと特定のtRNAアンチコドンが相補的塩基対を形成することで符合する。アミノアシルtRNA合成酵素が誤ったアミノ酸とtRNAとの対合を形成すると、誤った結合のアミノアシルtRNAが生成し、その結果、タンパク質の対応する位置に不適切なアミノ酸が生じる可能性がある。このような遺伝暗号の「誤訳」は、ほとんどの生物で低いレベルで自然に起こるが[5]、ある種の細胞環境では、mRNA解読の許容範囲が増して細胞の利益につながる場合もある。

リボソームには、tRNAと結合する部位が2つある。それぞれ、アミノアシル部位(Aと略す)、ペプチジル部位/出口部位(P/Eと略す)である。リボソームはmRNAの3'末端に向かって移動するため、mRNAに対して3つの部位は5'から3'へE-P-Aの順で方向付いている(最初の図を参照)。A部位(英語版)では、入ってくるtRNAをmRNA上の相補的なコドンと結合する。P/E部位(英語版)では、そのtRNAと成長中のポリペプチド鎖を保持する。アミノアシルtRNAがmRNA上の対応するコドンと最初に結合するのはA部位で行われる。次に、A部位にあるtRNAのアミノ酸と、P/E部位にある充填tRNA(charged tRNA)のアミノ酸との間にペプチド結合が形成される。成長するポリペプチド鎖はA部位のtRNAに転移する。P/E部位のアミノ酸を持たないtRNAが移動して転座が起こる。A部位にあったtRNAは、ポリペプチド鎖と結合した状態でP/E部位に移動し、そのtRNAは離れて別のアミノアシルtRNAがA部位に入り、この過程が繰り返される[6]

新しいアミノ酸が鎖に付加され、tRNAがリボソームから細胞質へ遊離した後、トランスロカーゼ(転移酵素)(英語版)であるEF-G細菌の場合)またはa/eEF-2(英語版)(真核生物および古細菌の場合)に結合したグアノシン三リン酸(GTP)の加水分解で供給されるエネルギーによって、リボソームは3'末端の方向へ1コドン移動する。タンパク質の翻訳に必要なエネルギーはかなり多い。n個のアミノ酸を含むタンパク質の場合、翻訳に必要な高エネルギーリン酸結合の数は4n-1個である[7]。翻訳速度はさまざまで、原核細胞は(1秒間に17-21個のアミノ酸残基)真核細胞(1秒間に6-9個のアミノ酸残基)よりもかなり速い[8]

一般に、リボソームは正確でプロセッシブ(mRNAに沿って連続してアミノ酸鎖を合成すること)な機械と考えられているが、翻訳プロセスは誤りを前提としていて、tRNAが誤ったコドンに結合したり誤ったアミノ酸に結合するために、誤ったタンパク質の合成や翻訳の早期断念につながる可能性がある[9]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:56 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef