群同型
[Wikipedia|▼Menu]

抽象代数学において、群同型(写像) (group isomorphism) は 2 つのの間の関数であって与えられた群演算と両立する方法で群の元の間の一対一対応ができるものである。2 つの群の間に同型写像が存在すれば、群は同型 (isomorphic) と呼ばれる。群論の見地からは、同型な群は同じ性質を持っており、区別する必要はない。
定義と表記

2つの (G, ?) と (H, ⊙ {\displaystyle \odot } ) が与えられたとき、(G, ?) から (H, ⊙ {\displaystyle \odot } ) への群同型写像 (group isomorphism) はG から H への全単射群準同型である。説明すると、これが意味するのは、群同型写像は全単射関数 f : G → H {\displaystyle f:G\rightarrow H} であってすべての u, v ∈ G に対して f ( u ∗ v ) = f ( u ) ⊙ f ( v ) {\displaystyle f(u*v)=f(u)\odot f(v)}

が成り立つということである。

2つの群 (G, ?) と (H, ⊙ {\displaystyle \odot } ) が同型 (isomorphic) であるとは、一方から他方への同型写像が存在するということである。これは ( G , ∗ ) ≅ ( H , ⊙ ) {\displaystyle (G,*)\cong (H,\odot )}

と書かれる。

しばしば短く簡潔な表記を用いることができる。適切な群演算があいまいでないときそれらは省略され G ≅ H {\displaystyle G\cong H}

と書く。

さらにシンプルに G = H と書くことさえある。そのような表記が混乱や曖昧さなく可能であるかどうかは文脈に依る。例えば、等号は群が両方同じ群の部分群であるときには全く適切でない。例も参照。

逆に、群 (G, ?)、集合 H、全単射 f : G → H {\displaystyle f:G\rightarrow H} が与えられると、 f ( u ) ⊙ f ( v ) = f ( u ∗ v ) {\displaystyle f(u)\odot f(v)=f(u*v)}

と定義することによって H を群 (H, ⊙ {\displaystyle \odot } ) にできる。

H = G かつ ⊙ {\displaystyle \odot } = ? であれば、全単射は同型である (q.v.)。

直感的には、群論家は 2 つの同型な群を次のように見る: 群 G のすべての元 g に対して、H のある元 h が存在して、h は g と'同じように振る舞う'(g と同じように群の他の元と演算する)。例えば、g が G を生成すれば、h も H を生成する。これは特に G と H が全単射対応にあることを意味する。したがって、同型写像の定義は極めて自然である。

群の同型写像は群の圏における可逆としても同等に定義できる。ただしここで可逆は両側逆元を持つことを意味する。


すべての
実数が加法についてなす群 ( R {\displaystyle \mathbb {R} } ,+) は、すべての正の実数が乗法についてなす群 ( R {\displaystyle \mathbb {R} } +,×) に、同型写像
f ( x ) = e x {\displaystyle f(x)=e^{x}} (指数関数参照)によって同型である: ( R , + ) ≅ ( R + , × ) . {\displaystyle (\mathbb {R} ,+)\cong (\mathbb {R} ^{+},\times ).}

整数の(加法)群 Z {\displaystyle \mathbb {Z} } は R {\displaystyle \mathbb {R} } の部分群であり、商群 R / Z {\displaystyle \mathbb {R} /\mathbb {Z} } は絶対値 1 の複素数の(乗法)群 S 1 {\displaystyle S^{1}} に同型である:
R / Z ≅ S 1 {\displaystyle \mathbb {R} /\mathbb {Z} \cong S^{1}} 同型写像はすべての x ∈ R {\displaystyle x\in \mathbb {R} } に対して f ( x + Z ) = e 2 π x i {\displaystyle f(x+\mathbb {Z} )=e^{2\pi xi}} によって与えられる。

クラインの四元群 (Klein four-group) は Z 2 = Z / 2 Z {\displaystyle \mathbb {Z} _{2}=\mathbb {Z} /2\mathbb {Z} } の 2 つのコピーの直積に同型であり(合同算術参照)、したがって Z 2 × Z 2 {\displaystyle \mathbb {Z} _{2}\times \mathbb {Z} _{2}} と書ける。別の表記は Dih2 である、なぜならばそれは二面体群であるからである。


これを一般化して、すべての奇正数 n に対して、Dih2n は Dihn と Z2 の直積に同型である。


(G, ?) が無限巡回群であれば、(G, ?) は整数全体(が加法演算についてなす群)に同型である。代数的な視点からは、これはすべての整数のなす集合が「唯一の」無限巡回群であることを意味する。

選択公理に依存して同型であることが証明できる群もあるが、証明は具体的な同型写像の構成方法を示さない。例:

群 ( R {\displaystyle \mathbb {R} } , +) はすべての複素数が加法についてなす群 ( C {\displaystyle \mathbb {C} } , +) に同型である[1]

0 でない複素数が乗法を演算としてなす群 ( C {\displaystyle \mathbb {C} } *, ・) は上で述べた群 S1 に同型である。

性質

(G, ?) から (H, ⊙ {\displaystyle \odot } ) への同型写像の
は必ず {eG} である、ただし eG は群 (G, ?) の単位元。


(G, ?) が (H, ⊙ {\displaystyle \odot } ) に同型で G が可換群であれば H も可換である。


(G, ?) が (H, ⊙ {\displaystyle \odot } ) に同型(で f が同型写像)であれば、a が G の元で位数 n であれば、f(a) もそうである。


(G, ?) が (H, ⊙ {\displaystyle \odot } ) に同型な局所有限群(英語版)であれば (H, ⊙ {\displaystyle \odot } ) も局所有限である。


前の例は「群の性質」は同型によって必ず保たれることを 例証している。

巡回群

与えられた(有限)位数のすべての巡回群は ( Z n , + n ) {\displaystyle (\mathbb {Z} _{n},+_{n})} に同型である。

G を巡回群とし n を G の位数とする。すると G は x によって生成される群である: < x >= { e , x , . . . , x n − 1 } {\displaystyle <x>=\{e,x,...,x^{n-1}\}} 。 G ≅ ( Z n , + n ) {\displaystyle G\cong (\mathbb {Z} _{n},+_{n})}

を示す。 φ : G → Z n = { 0 , 1 , . . . , n − 1 } {\displaystyle \varphi :G\rightarrow \mathbb {Z} _{n}=\{0,1,...,n-1\}} を φ ( x a ) = a {\displaystyle \varphi (x^{a})=a}

と定義する。明らかに φ {\displaystyle \varphi } は全単射である。すると φ ( x a ⋅ x b ) = φ ( x a + b ) = a + b = φ ( x a ) + n φ ( x b ) {\displaystyle \varphi (x^{a}\cdot x^{b})=\varphi (x^{a+b})=a+b=\varphi (x^{a})+_{n}\varphi (x^{b})}

であり、 G ≅ ( Z n , + n ) {\displaystyle G\cong (\mathbb {Z} _{n},+_{n})} が証明された。
結果

定義から次が従う。任意の同型写像 f : G → H {\displaystyle f:G\rightarrow H} は G の単位元を H の単位元に写す f ( e G ) = e H , {\displaystyle f(e_{G})=e_{H},}

逆元を逆元に写す: すべての u ∈ G に対して f ( u − 1 ) = [ f ( u ) ] − 1 , {\displaystyle f(u^{-1})=\left[f(u)\right]^{-1},}

そしてより一般に、n 乗を n 乗に写す f ( u n ) = [ f ( u ) ] n {\displaystyle f(u^{n})=\left[f(u)\right]^{n}}

そして逆写像 f − 1 : H → G {\displaystyle f^{-1}:H\rightarrow G} も群同型写像である。

関係「同型である」は同値関係のすべての公理を満たす。f が 2 つの群 G と H の間の同型写像であれば、群構造にのみ関係する G について正しいすべてのことは f を通じて H についての正しい同じ主張に翻訳され、逆もまた然り。
自己同型写像

群 (G, ?) から自身への同型写像はこの群の自己同型写像 (automorphism) と呼ばれる。したがってそれは全単射 f : G → G {\displaystyle f:G\rightarrow G} であって f ( u ) ∗ f ( v ) = f ( u ∗ v ) {\displaystyle f(u)*f(v)=f(u*v)}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:17 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef