統計力学
[Wikipedia|▼Menu]

統計力学



熱力学 · 気体分子運動論

粒子統計
マクスウェル=ボルツマン

ボース=アインシュタイン
フェルミ=ディラック
パラ · エニオン · 組み紐(英語版)

アンサンブル
ミクロカノニカルアンサンブル

カノニカルアンサンブル
グランドカノニカルアンサンブル
等温定圧アンサンブル
等エンタルピー-定圧

熱力学
気体の法則(英語版) · カルノーサイクル

デュロン=プティの法則

模型
デバイ · アインシュタイン · イジング

熱力学ポテンシャル
内部エネルギー
エンタルピー
ヘルムホルツの自由エネルギー
ギブズの自由エネルギー
グランドポテンシャル

科学者
マクスウェル · ギブズ · ボルツマン · アインシュタイン · オンサーガー · ウィルソン · 久保亮五 · カダノフ · フィッシャー · 川崎恭治 · パリージ · エドワーズ · ローレンツ · 蔵本由紀 · ジャルジンスキー

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









統計力学(とうけいりきがく、: statistische Mechanik、: statistical mechanics)は、力学系の微視的な物理法則を基にして、確率論の手法を用いて巨視的な性質を導き出すことを目的とした物理学の分野の一つである。統計物理学(: statistical physics)や統計熱力学(: statistical thermodynamics[1][2][3]) とも呼ばれる。歴史的には理想気体温度圧力などの熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマンジェームズ・クラーク・マクスウェルウィラード・ギブズらによって始められた。理想気体だけでなく、実在気体[4]液体固体やそれらの状態間の相転移磁性体ゴム弾性などの巨視的対象が広く扱われる[5]
概要

統計力学では、膨大な数(典型的にはアボガドロ数 1023 程度)の粒子により構成される力学系を対象とする。この力学系の状態を指定するには、系を構成する粒子数に比例したオーダーの膨大な自由度を必要とする。一方で、この系を熱力学的に取り扱う場合は、系の状態は巨視的な物理量である状態量によって指定される。熱力学的な状態は温度圧力エネルギー物質量などの少ない自由度で指定されることが知られている。

すなわち、熱力学的に状態が指定されたとしても、力学的には状態が完全に指定されることはなく、膨大な状態を取り得る。統計力学の基本的な取り扱いは、熱力学的な条件(巨視的な条件)の下で力学的な状態(微視的な状態)が確率的に出現するものとして考える。

系が取り得る全ての状態の集合(標本空間)を Ω とする。系が状態 ω ∈ Ω にあるときの物理量は確率変数 O(ω) として表される。条件 α の下で系が状態 ω を取る条件付き確率確率密度関数が p(ω|α) で与えられているとき、熱力学的な物理量としての状態量が期待値 O ( α ) = ⟨ O ( ω ) ⟩ α = ∑ ω ∈ Ω O ( ω ) p ( ω 。 α ) {\displaystyle O(\alpha )=\langle O(\omega )\rangle _{\alpha }=\sum _{\omega \in \Omega }O(\omega )\,p(\omega |\alpha )}

として実現される。特に熱力学における基本的な関数であるエントロピーが S ( α ) = − k ⟨ ln ⁡ p ( ω 。 α ) ⟩ α = − k ∑ ω ∈ Ω p ( ω 。 α ) ln ⁡ p ( ω 。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:45 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef