経緯度
[Wikipedia|▼Menu]

経緯度(けいいど、英語: longitude and latitude)とは、経度(longitude)および緯度(latitude)を指し、地球を含む天体表面上で位置(点)を示すための座標表現である。本稿では地理座標系で用いられる経緯度を説明する。

基本的に、その天体の表面点の垂直ベクトルを考え、その向きを球面座標角度)で表現する[1]経度( λ {\displaystyle \lambda } )、緯度( ϕ {\displaystyle \phi } )、および垂直線(赤)。ECEF直交座標・地理座標・局所座標の関係(回転楕円体面上)。 ( X , Y , Z ) {\displaystyle (X,Y,Z)} および方位角 θ {\displaystyle \theta } の取り方は右手系
地理経緯度

経緯度は基本的にその地表点の垂直ベクトルに基づき、そのベクトルの方向を球面座標角度表現したものである。{経度 λ {\displaystyle \lambda } 、緯度 ϕ {\displaystyle \phi } }⇔{局所垂直ベクトル ( cos ⁡ ϕ cos ⁡ λ , cos ⁡ ϕ sin ⁡ λ , sin ⁡ ϕ ) {\displaystyle (\cos \phi \cos \lambda ,\,\cos \phi \sin \lambda ,\,\sin \phi )} }。

地理座標系で用いられる地理経緯度(geographic longitude and latitude)[2]は、地球を回転楕円体と見なし、その面の法線ベクトル方向に基づく[3]
経緯度の歴史(天文経緯度)

ただし歴史的には、地表の鉛直線に基づく垂直方向(天頂)が天球のどこを指すかによって決めた天文経緯度(astronomical longitude and latitude)が使われてきた。これは地球の重力の鉛直線偏差の影響(加えて地球の極運動の影響)を被っている。従って、距離・面積との関係も簡素にならない。

地理学・測地学の発展とともに、経緯度原点を国内に設け、その地点の天文経緯度を原点として位置づけ、接する準拠楕円体に基づく地理経緯度を用いる方式が行われた(地域的測地系)。

さらに近年は全地球的な準拠楕円体に基づく方式の採用が増えている(全地球的測地系)。
地理経緯度の変換式

地理座標(経度 λ {\displaystyle \lambda } 、緯度 ϕ {\displaystyle \phi } 、高度(楕円体高) h {\displaystyle h} )とECEF直交座標系 ( x , y , z ) {\displaystyle (x,y,z)} との変換、および微小量の式は下記となる(地球楕円体長半径 a {\displaystyle a} 、離心率 e = f ( 2 − f ) {\displaystyle e={\sqrt {f(2-f)}}} )。 { x = ( N ( ϕ ) + h ) cos ⁡ ϕ cos ⁡ λ , y = ( N ( ϕ ) + h ) cos ⁡ ϕ sin ⁡ λ , z = ( N ( ϕ ) ( 1 − e 2 ) + h ) sin ⁡ ϕ , {\displaystyle {\begin{cases}x=\left(N(\phi )+h\right)\cos {\phi }\cos {\lambda },\\y=\left(N(\phi )+h\right)\cos {\phi }\sin {\lambda },\\z=\left(N(\phi )(1-e^{2})+h\right)\sin {\phi },\end{cases}}} ( d x d y d z ) = ( − sin ⁡ λ − sin ⁡ ϕ cos ⁡ λ cos ⁡ ϕ cos ⁡ λ cos ⁡ λ − sin ⁡ ϕ sin ⁡ λ cos ⁡ ϕ sin ⁡ λ 0 cos ⁡ ϕ sin ⁡ ϕ ) ( d E d N d U ) , ( d E d N d U ) = ( ( N ( ϕ ) + h ) cos ⁡ ϕ 0 0 0 M ( ϕ ) + h 0 0 0 1 ) ( d λ d ϕ d h ) , N ( ϕ ) ≜ a 1 − e 2 sin 2 ⁡ ϕ , M ( ϕ ) ≜ a ( 1 − e 2 ) ( 1 − e 2 sin 2 ⁡ ϕ ) 3 / 2 = N ( ϕ ) 1 − e 2 1 − e 2 sin 2 ⁡ ϕ . {\displaystyle {\begin{aligned}{\begin{pmatrix}dx\\dy\\dz\\\end{pmatrix}}&={\begin{pmatrix}-\sin \lambda &-\sin \phi \cos \lambda &\cos \phi \cos \lambda \\\cos \lambda &-\sin \phi \sin \lambda &\cos \phi \sin \lambda \\0&\cos \phi &\sin \phi \\\end{pmatrix}}{\begin{pmatrix}dE\\dN\\dU\\\end{pmatrix}},\\{\begin{pmatrix}dE\\dN\\dU\\\end{pmatrix}}&={\begin{pmatrix}\left(N(\phi )+h\right)\cos \phi &0&0\\0&M(\phi )+h&0\\0&0&1\\\end{pmatrix}}{\begin{pmatrix}d\lambda \\d\phi \\dh\\\end{pmatrix}},\\N(\phi )&\triangleq {\frac {a}{\sqrt {1-e^{2}\sin ^{2}\phi }}},\\M(\phi )&\triangleq {\frac {a(1-e^{2})}{\left(1-e^{2}\sin ^{2}\phi \right)^{3/2}}}=N(\phi ){\frac {1-e^{2}}{1-e^{2}\sin ^{2}\phi }}.\end{aligned}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:49 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef