組合せ数学
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "組合せ数学" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2024年1月)

組合せ数学(くみあわせすうがく、英語: combinatorics)あるいは組合せ論(くみあわせろん)とは、特定の条件を満たす(普通は有限の)対象からなる集まりを研究する数学分野離散数学の中核の一つとされる。特に問題とされることとして、

集合に入っている対象を数えたり(数え上げ組合せ論)、

いつ条件が満たされるのかを判定し、その条件を満たしている対象を構成したり解析したり(組合せデザイン(英語版))、

「最大」「最小」の対象を求めたり(極値組合せ論(英語版))、

対象が持つ代数的構造を明らかにしたり(代数的組合せ論(英語版))

することが挙げられる。要素同士の繋がりを扱うグラフ理論も組合せ論の一分野とされ、MSC2020(英語版)においては、大分類として組合せ論に05が、中分類として数え上げ組合せ論に05A、デザインと配置(英語版)に05B、グラフ理論に05C、極値組合せ論に05D、代数的組合せ論に05Eが割り当てられている[1]
概観と歴史

組合せ数学は理論構築と同じくらい、(特に20世紀後半以降は)与えられた問題を解決することが目標になっている。組合せ数学のうちで最も古く取っ付きやすいものはグラフ理論であり、今では他の様々な分野と結びつけられている。

組合せ論的な問いの例として、52枚のトランプカードの並べ方は何通りあるか?というものが挙げられる。これに対する答えは 52! (52 の階乗)であり、この数は(だいたい 8.065817517094 × 1067)、8 の後ろにゼロが67個もついている驚くべきスケールの大きさだとも言える。これは例えば無量大数(1068)に匹敵するほど大きい。

別の種類の問題には、n人の人でいくつかのグループを作るとき、それぞれの人が少なくとも1つのグループに属し、どの2人をとっても共通してちょうど1つのグループに属しており、どの2グループをとっても共通の人がちょうど1人ずついて、n-1人以上からなるグループがないような分け方はあるか?というものがある。答えはnにより、今でも部分的な回答しかえられていない。組み合わせ論的な記述の最も古い記録はインドに見いだすことができる。紀元前6世紀にスシュルタ(en:Sushruta)によって書かれた医学書スシュルタ・サミタ(en:Sushruta Samhita)には六つの味を63通りに組み合わせることができると書かれている。苦味酸味塩味甘味渋味辛味を一つだけ使うか二つ一緒に使うか、三つ同時に使うか、などなど。ここで、単純な味は6種類あり、二つの組み合わせは15種類あり、三つの組み合わせは20種類ある、などがいえる。紀元前300年頃にジャイナ教の数学者によって書かれたバガバティ・スートラは   C ( n , 1 ) = n {\displaystyle \ C(n,1)=n} , C ( n , 2 ) = n ( n − 1 ) 1 ⋅ 2 {\displaystyle C(n,2)={\frac {n(n-1)}{1\cdot 2}}} , C ( n , 3 ) = n ( n − 1 ) ( n − 2 ) 1 ⋅ 2 ⋅ 3 {\displaystyle C(n,3)={\frac {n(n-1)(n-2)}{1\cdot 2\cdot 3}}}   P ( n , 1 ) = n {\displaystyle \ P(n,1)=n} ,   P ( n , 2 ) = n ( n − 1 ) {\displaystyle \ P(n,2)=n(n-1)} ,   P ( n , 3 ) = n ( n − 1 ) ( n − 2 ) {\displaystyle \ P(n,3)=n(n-1)(n-2)}

に対応する組合せ順列の規則を含んでいる(記号C(n, r)とP(n, r)については#繰り返しを許さない組合せ#繰り返しを許さない順列節を参照のこと。)。

n が 2, 3, 4 の場合には実際の数値が計算されていて、さらに著者はより大きい n についても同じ方法で計算できると述べた。

このやり方で 5, 6, 7, ..., 10 など、あるいは数えきれるもの、数えきれないもの、無限のものまでが指定される。一時に一つのものをとる、あるいは二つのものをとる、...、十個のものをとる、組合せの数が構成された以上それらはすべて達成される。

これは算術が様々な無限大の数に拡張されうることを示唆している。組合せの数と二項展開係数との間の関係は紀元前3世紀にピンガラ(en:Pingala)によって楽曲の形で指摘されている。彼はグル(guru)(長音)とラグ(laghu)(短音)の様々な組み合わせをいわゆるパスカルの三角形(彼はメル・プラスターラ /「メル山(須弥山)の階段」と呼んだ)によって与え、公式   C ( n + 1 , r ) = C ( n , r ) + C ( n , r − 1 ) {\displaystyle \ C(n+1,r)=C(n,r)+C(n,r-1)}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:46 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef