磁気単極子
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "磁気単極子" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2022年7月)

磁気単極子、磁気モノポール(: magnetic monopole)とは単一の磁荷のみを持つもののことである。

2021年現在に至るまで素粒子としては発見されていない。宇宙のインフレーションの名残として生み出されたと仮定されるものの一つであり、スーパーカミオカンデなどで磁気単極子を観測する試みが続けられている。
概要棒磁石を切断しても、N極とS極のみを取り出すことはできない。

磁石にはN極、S極の二つの磁極が必ず存在し、この組み合わせを磁気双極子という。N極のみ、およびS極のみを持つ磁石、磁気単極子(モノポール)は2021年現在まで観測されていない。例えば両端がそれぞれN極とS極の棒磁石を真ん中で二つに折ったとしても、同じく両端がそれぞれN極とS極の棒磁石が二つできるだけで、N極S極のみを単純に取り出すことはできない。電磁石を考えれば、こうなることは容易に理解できる。電磁石は電流を流したコイルであり、これを二つに分割しても、巻き数が半分になった電磁石が二つ生まれるだけである。永久磁石についても、それを構成する物質の原子が電磁石と同じ働きをしているものであり、原理としては同じである。マクスウェルの方程式により代表される古典電磁気学はこの前提のもとに構成されている。

その一方で、電気については、プラスとマイナスの二つが存在し、これらは単独で取り出す事が可能である。これは電気の根元がプラスの陽子とマイナスの電子に由来しているからである。そして、古典電磁気学は電気と磁気の関係について対称であり、この関係を逆にする事が可能である。普通は、コイルを流れる電気によって磁力を発生する、言い換えれば円周上を周回する電子の運動によって磁界が生じる。これを、磁気単極子が円周上を周回する事によって電界が生じるというモデルに置き換える事ができるのである。つまり、マクスウエルの方程式は磁気単極子の存在を許すように容易に改変できる。さらに1931年にディラックは量子力学でも磁気単極子を考えることが可能であり、しかもそれが可能になるための条件から電荷及び磁荷の最小単位の存在が導かれることを示して磁気単極子が一躍注目をあびた。

2013[1] 年、Sergio Severini と Alessandro Settimi は、マクスウェルの 2 番目の方程式に発散ゼロの新しい視点を与え、磁気誘導場に関連することに関心を持っていた。この目的のために、2 人の著者は、自由空間を伝播する電磁界 (EM) の発生源として、大規模な荷電粒子と非相対論的粒子で構成されるシステムの物理的側面をいくつか検討した。特に、総運動量の保存と磁気誘導場のゼロ発散の条件との間のリンクが深く調査された。この科学論文は、ソレノイド性条件として知られる空間全体の磁気誘導場のゼロ発散特性の必要条件が、システムの全運動量の保存、つまり源と場から直接導き出されるという新しい文脈を提示した。 一般に、この研究は、適切な対称性仮説の下で理論的にのみもっともらしい磁気単極子の存在、または少なくとも観測可能性に関するいくつかの疑問を未解決のままにする結果となった。
陽子崩壊の触媒作用

予想される大統一理論においては、クォークレプトンは本来同じ粒子の異なった状態であり、インフレーションの際の相転移によって分化したとされ、相互に変換可能であるとされる。陽子内のクォークがレプトンに変化するとバリオン数を保持できなくなり陽子崩壊が発生する。しかし陽子の予想寿命が極めて長いことからもわかるようにクォークからレプトンへの変化は極めて低い確率でしか発生しない。だがモノポールはインフレーション以前のクォークとレプトンが分化する前の空間の位相欠陥であり、その中心部付近においてはクォークとレプトンは分化することができず、分化前の粒子に戻ってしまい、そこから通常空間に復帰した粒子はクォークにもレプトンにも変化する可能性がある。そのため陽子や中性子のクォークがモノポールの磁力で引き付けられ、中心部付近を通過してレプトンに変化すると陽子崩壊が発生する。モノポール自身は外部からのクォークを変換しただけで不変であるので、これを触媒に見立てることができる。これらの作用を予想した人物の名を取ってルバコフ効果と呼ぶ場合もある。
発見、発明の試み

スーパーカミオカンデでは大統一理論の証明の一環としてモノポールの探索をしている。
マクスウェルの方程式

ディラックによれば、「磁気単極子の存在」を仮定した場合、マクスウェルの方程式は次のようになる。 { ∇ ⋅ B = ρ m ∇ × E = − ( ∂ B ∂ t + J m ) ∇ ⋅ D = ρ e ∇ × H = J e + ∂ D ∂ t {\displaystyle {\begin{cases}{\begin{aligned}\nabla \cdot {\boldsymbol {B}}&=\rho _{\mathrm {m} }\\\nabla \times {\boldsymbol {E}}&=-\left({\dfrac {\partial {\boldsymbol {B}}}{\partial t}}+{\boldsymbol {J}}_{\mathrm {m} }\right)\\\nabla \cdot {\boldsymbol {D}}&=\rho _{\mathrm {e} }\\\nabla \times {\boldsymbol {H}}&={\boldsymbol {J}}_{\mathrm {e} }+{\dfrac {\partial {\boldsymbol {D}}}{\partial t}}\end{aligned}}\end{cases}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:86 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef