確率変数の収束
[Wikipedia|▼Menu]

数学確率論の分野において、確率変数の収束(かくりつへんすうのしゅうそく、: convergence of random variables)に関しては、いくつかの異なる概念がある。確率変数のある極限への収束は、確率論や、その応用としての統計学確率過程の研究における重要な概念の一つである。より一般的な数学において同様の概念は確率収束 (stochastic convergence) として知られ、その概念は、本質的にランダムあるいは予測不可能な事象の列は、その列から十分離れているアイテムを研究する場合において、しばしば、本質的に不変な挙動へと落ち着くことが予想されることがある、という考えを定式化するものである。異なる収束の概念とは、そのような挙動の特徴づけに関連するものである:すぐに分かる二つの挙動とは、その列が最終的に定数となるか、あるいはその列に含まれる値は変動を続けるがある不変な確率分布によってその変動が表現される、というようなものである。
背景

「確率収束」とは、本質的にランダムあるいは予測不可能である事象の列がしばしばあるパターンへと落ち着くことが期待される、という考えを定式化するものである。そのパターンとは、例えば、

ある固定値や、ある確率事象から発生するそれ自身への、古典的な意味での収束

純粋な決定論的な関数から生じる結果への相似性の増加

ある特定の結果への嗜好の増加

ある特定の結果から離れていることに対する反発の増加

などが挙げられる。それより明白ではないが、より理論的なパターンとしては

次の結果を表現する確率分布が、ある分布へとより似るようになること

ある特定の値から離れた結果の期待値を計算することによって形成される列が 0 へと収束すること

次の事象を表現する確率変数分散がより少なくなっていくこと

などが挙げられる。これらの起こりうる異なるタイプのパターンは、研究されている異なるタイプの確率収束において反映される。

上述の議論は一つの列の一つの極限値への収束と関連しているが、二つの列が互いへと収束する概念も重要である。しかし、それは、それら2つの列の差や比によって定義される列を研究することによって容易に扱うことができる。

例えば、等しい有限の平均と分散を持つような n 個の無相関(英語版)確率変数 Yi, i = 1, …, n の平均が X n = 1 n ∑ i = 1 n Y i {\displaystyle X_{n}={\frac {1}{n}}\sum _{i=1}^{n}Y_{i}}

で与えられるとすると、n が無限大へと近付く時、Xn は確率変数 Yi の共通の平均 μ へと確率収束(下記参照)する。この結果は大数の弱法則として知られる。別のタイプの収束は、中心極限定理を含む別の有用な定理において重要となる。

以下では、(Xn) を確率変数列とし、X を確率変数とし、それらすべては同一の確率空間 ( Ω , F , P ) {\displaystyle \scriptstyle (\Omega ,{\mathcal {F}},P)} 上で定義されるものとする。
分布収束

分布収束の例サイコロ工場
新しく建設されたばかりのサイコロ工場について考える。初めの方に作られたサイコロには、その製造過程の不完全さに起因して、偏りがあると考えられる。それらを投げた時に出る目から得られる分布は、理想とする
一様分布とはきわだって異なるものとなるであろう。

工場が改善されるにつれてサイコロの偏りは少なくなり、より新しく作られたサイコロを投げた時に出る目は一様分布により近いものとなっていく。
コイン投げ
偏りの無いコインを n 回投げた時に表が出た割合を Xn とする。このとき、X1 は期待値 μ = 0.5 および分散 σ2 = 0.25 であるベルヌーイ分布に従う。それ以降の確率変数 X2, X3, … はすべて二項的に分布する。

n が大きくなるにつれて、その分布はしだいに正規分布の釣鐘型曲線に近い形を取るようになる。Xn を適切にシフトし、リスケールすることによって Z n = n ( X n − μ ) / σ {\displaystyle \scriptstyle Z_{n}={\sqrt {n}}(X_{n}-\mu )/\sigma } は標準正規分布へと分布収束する。この結果は有名な中心極限定理によるものである。
グラフ例

{Xi} を、一様 U(?1,1) 確率変数の独立同一列とする。 Z n = 1 n ∑ i = 1 n X i {\displaystyle \scriptstyle Z_{n}={\scriptscriptstyle {\frac {1}{\sqrt {n}}}}\sum _{i=1}^{n}X_{i}} を、それらの(正規化された)和とする。このとき、中心極限定理より、Zn の分布は標準 N(0, .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}1/3) 分布へと近付く。この収束を、下図に表す:n が大きくなるにつれて、確率密度関数はガウス曲線へと近付いていく。

このタイプの収束により、ある与えられた確率分布によってより良くモデル化されるようなランダム実験の列における結果を期待することができる。

分布収束は、この記事内で述べられる全ての他のタイプの収束も意味するという点において、最も弱い収束である。しかしながら、実際の現場において、分布収束は非常によく利用される; 最もよく現れるのは、中心極限定理の応用においてである。
定義

確率変数の列 X1, X2, … が、ある確率変数 X へと分布収束する、あるいは弱収束あるいは法則収束 (converge in law) するとは、 lim n → ∞ F n ( x ) = F ( x ) , {\displaystyle \lim _{n\to \infty }F_{n}(x)=F(x),}

が、F が連続であるような全ての数 x ∈ R に対して成り立つことである。ここで、Fn および F はそれぞれ確率変数 Xn および X の累積分布関数である。

F が連続であるような点のみを考えるということは本質的である。例えば、もし Xn が区間 [0, 1/n] 上一様に分布しているなら、その列は退化確率変数 X = 0 へと収束する。実際、x ? 0 である時はすべての n に対して Fn(x) = 0 が成り立ち、 n > 0 である時はすべての x ? 1/n に対して Fn(x) = 1 が成り立つ。しかしながら、すべての n に対して Fn(0) = 0 であるにもかかわらず、この極限確率変数に対しては F(0) = 1 である。したがって、F の不連続点 x = 0 では累積分布関数の収束は成立しない。

分布収束は次のように表記することができる。 X n   → d   X ,     X n   → D   X ,     X n   → L   X ,     X n   → d   L X , X n ⇝ X ,     X n ⇒ X ,     L ( X n ) → L ( X ) , {\displaystyle {\begin{aligned}&X_{n}\ {\xrightarrow {d}}\ X,\ \ X_{n}\ {\xrightarrow {\mathcal {D}}}\ X,\ \ X_{n}\ {\xrightarrow {\mathcal {L}}}\ X,\ \ X_{n}\ {\xrightarrow {d}}\ {\mathcal {L}}_{X},\\&X_{n}\rightsquigarrow X,\ \ X_{n}\Rightarrow X,\ \ {\mathcal {L}}(X_{n})\to {\mathcal {L}}(X),\\\end{aligned}}}

ここで L X {\displaystyle \scriptstyle {\mathcal {L}}_{X}} は X の法則(確率分布)である。例えば、X が標準正規であるなら X n → d N ( 0 , 1 ) {\displaystyle X_{n}\,{\xrightarrow {d}}\,{\mathcal {N}}(0,\,1)} と書くことができる。

確率ベクトル(英語版) (X1, X2, …) ⊂ Rk に対する分布収束も、同様に定義される。この列がある確率 k-ベクトルへと分布収束するとは、 lim n → ∞ Pr ⁡ ( X n ∈ A ) = Pr ⁡ ( X ∈ A ) {\displaystyle \lim _{n\to \infty }\operatorname {Pr} (X_{n}\in A)=\operatorname {Pr} (X\in A)}

が、X の連続集合(英語版)であるすべての A ⊂ Rk に対して成り立つことである。

分布収束の定義は、確率ベクトルから、任意の距離空間におけるより複雑な確率要素や、さらには漸近の場合を除いて可測でない「確率変数」に対してですら拡張される-そのような状況は例えば経験過程の研究において現れ、これは「定義されていない法則の弱収束」である[1]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:71 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef