真空
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、工学、物理学について説明しています。その他の用法については「真空 (曖昧さ回避)」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "真空" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2011年7月)

真空(しんくう、: vacuum)は、通常の大気圧より低い圧力の気体で満たされた空間の状態[1]

また物理学における概念として、古典論における絶対真空、量子論における真空状態を指す場合にも用いられることがある。

真空を物理学の古典論における絶対真空でいう物質が存在しない空間のように思われることがあるが、微視的ではない大きさの空間で物質が存在しない状態の実現は不可能である。(物理学の古典論における絶対真空を参照)真空を実証するポンプ.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}
各分野における真空の語義
一般利用での真空

日本産業規格 (JIS)では「通常の大気圧より低い圧力の気体で満たされた空間内の状態」とされている。

真空の状態は真空ポンプを用いて容器内部の気体を排気することで得ることができる。真空度は対象の空間に存在する気体原子・分子が外壁に及ぼす圧力で表される。単位はTorr(トル)が用いられてきたが、国際単位系への統一に伴いPa(パスカル)に移行しつつある。1 atm=1.01325×105 Pa=760 Torrである。真空度は言葉のイメージと表現が逆になるので注意が必要である(例:真空度が高い(高いレベルの真空度である)=圧力が低い)。

一般的な圧力と同じくゲージ圧と絶対真空度があり、それぞれ所謂ゲージ圧絶対圧に対応している。丁度摂氏温度(℃)と絶対温度(K)のように、大気圧を0Paとしてそこからの変位量を示したものがゲージ圧。絶対真空を0Paとしてそこからの積算を示したものが絶対真空度である。

但しゲージ圧真空度の場合、所謂ゲージ圧として真空状態を「ゲージ圧?100kPa」のように負の値で表す場合と、別の単位として扱って「ゲージ圧真空度100kPa」のように正の値で表す場合、更に「ゲージ圧真空度?100kPa」のように表す場合があるので、仕様確認時に絶対真空度かどうかと合わせて確認する必要がある。尚、絶対真空度の場合は「1.33×10-7kPa(abs)」のように注記が入ることがある。
ISOにおける真空の領域の区分

ISO 3529-1では真空を圧力領域により次のように区分している。

領域英語名圧力範囲地球大気での同等の気圧の地点の地上からの距離
低真空Low Vacuum100 kPa?100 Pa地上?約60 km
中真空Medium Vacuum100 Pa?0.1 Pa約60 km?約90 km
高真空High Vacuum0.1 Pa?10−5 Pa約90 km?約250 km
超高真空Ultra-high Vacuum10−5 Pa以下約250 km?

尚この超高真空より真空度の高い領域(主に10−8または10−9 Pa以下)として極高真空 (Extreme High Vacuum、XHV) という用語も使用されることがあるが、ISOでは定められていない。
物理学の概念としての真空
古典論における絶対真空

古典論において、真空は物質が存在せず・圧力が 0 の仮想的状態、「何も無い状態」である。 絶対真空ともいう。

これは概念的なものであり、実際に実現可能なものではない。

絶対真空とは空間中に原子・分子が一つも存在しない状態を表すが、具体的な方法で実現可能な真空状態(本稿で言う一般利用の真空状態)には物質が存在し圧力が観測される。例えば地球の表面上の圧力(1気圧)= 100 kPaの条件の下では1 cm3中の気体分子は0 ℃時で2.69×1019個[注釈 1]存在する。真空の実現とはその膨大な量の原子・分子を減らしていく過程であるが、人為的に作り出せる真空状態の限界は10−11 Pa程度である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef