直交変換
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "等長写像" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2022年2月)

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。
定義

距離空間 (X, d) の任意の元を x, y とする(d は距離関数)。このとき、X から別の距離空間 ( X' , d' ) への写像 f が、 d ( x , y ) = d ′ ( f ( x ) , f ( y ) ) {\displaystyle d(x,y)=d'(f(x),f(y))}

なる関係を満たすとき、写像 f は距離を保つ、あるいは f は等長写像であるという。定義から、等長写像が単射であることはすぐに分かる。

距離空間 X, Y の間に距離を保つ全単射 (isometry) が存在するとき、X と Y は距離空間として等長 (isometric) であるという。また、距離空間 X からそれ自身への距離を保つ全単射を X 上の等長変換という。X 上の等長変換の全体は群を成し、それを X の等長変換群とよぶ。

定義をノルム空間に適用すると、ベクトル空間 X におけるノルムを |。・ ||X で表すとき、写像 f: X → X' が等長写像であるための条件は||x - y||X = ||f(x) - f(y)||X'

となる。特に f が線形写像ならばこれは ||x||X = ||f(x)||X' と同じである。
計量

以下では X をノルム空間とする。X の部分集合 W に対して、f(W):= {f(x) 。x∈W} とする。X 内の二つの部分集合 C, C' に対し、等長写像 f が存在して f( C' ) = C が言えるとき、C と C' は合同であるという。また、aC:= {ax 。x∈C} としたとき、ある正数 k が存在して f( C' ) = kC がいえれば、C と C' は相似であるという。

X がさらに計量ベクトル空間であって、||x|。= <x, x>1/2 であり、f が線形変換ならば、f は内積を変えない。これは次のようにして分かる。X の元 x, y に対し、内積の実部に関して

ℜ ⟨ f ( x ) , f ( y ) ⟩ {\displaystyle \Re \langle f(x),f(y)\rangle } = 1 2 ( 。 。 f ( x ) + f ( y ) 。 。 2 − 。 。 f ( x ) 。 。 2 − 。 。 f ( y ) 。 。 2 ) {\displaystyle ={\frac {1}{2}}(||f(x)+f(y)||^{2}-||f(x)||^{2}-||f(y)||^{2})}
= 1 2 ( 。 。 x + y 。 。 2 − 。 。 x 。 。 2 − 。 。 y 。 。 2 ) {\displaystyle ={\frac {1}{2}}(||x+y||^{2}-||x||^{2}-||y||^{2})}
= ℜ ⟨ x , y ⟩ {\displaystyle =\Re \langle x,y\rangle }

となる。虚部が等しいことは、x を -ix に置き換えると <-ix, y> の実部が <x, y> の虚部に等しいことから確かめられる。逆に内積を保てばもちろん等長写像になる。
直交変換・ユニタリ変換

X が実ベクトル空間であるとき、線形な等長変換として直交変換が対応する。これは直交行列 T を用いて Tx と書くことができる。複素ベクトル空間では同様な写像にユニタリ変換(およびその行列表現としてのユニタリ行列)が対応する。

一般に、実ベクトル空間内の等長写像は直交行列 T とあるベクトル a を用いて Tx + a と書くことができる(アフィン変換)。このうち、|T。= 1であるものを特にユークリッドの運動と呼ぶ。これは "回転"・"平行移動" の二つを合成してできるものである。上述の通り、等長写像はユークリッド空間の図形の間の合同をもたらすが、さらに一般に、リーマン多様体の間の等長写像(各点の微分が等長写像になるというように定義される。詳しい方の加筆を求む!)はその構造をすべて保存する。このような等長写像は運動と呼ばれ、運動の全体はあるをなす。
関連項目

等角写像

縮小写像
.mw-parser-output .asbox{position:relative;overflow:hidden}.mw-parser-output .asbox table{background:transparent}.mw-parser-output .asbox p{margin:0}.mw-parser-output .asbox p+p{margin-top:0.25em}.mw-parser-output .asbox{font-size:90%}.mw-parser-output .asbox-note{font-size:90%}.mw-parser-output .asbox .navbar{position:absolute;top:-0.90em;right:1em;display:none}

この項目は、自然科学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますPortal:自然科学)。
.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}

表示

編集


記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:12 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef