白色矮星
[Wikipedia|▼Menu]
ハッブル宇宙望遠鏡によって撮影されたシリウスAとシリウスBの画像。白色矮星であるシリウスBは、明るいシリウスAの左下に暗い点として写っている。

白色矮星[1][2](はくしょくわいせい、: white dwarf[1])は、大部分が電子が縮退した物質によって構成されている恒星の残骸であり(縮退星)、恒星進化の終末期にとりうる形態の一つである。白色矮星は非常に高密度であり、その質量は太陽と同程度であるにもかかわらず、体積は地球と同程度しかない。白色矮星の低い光度は天体に蓄えられた放射に起因するものであり、白色矮星内では核融合反応は発生していない[3]。白色矮星の異常な暗さが初めて認識されたのは1910年のことである[4]:1。"White dwarf" という名称は1922年にウィレム・ヤコブ・ルイテンによって名付けられた。
概要

知られている白色矮星の中で最も太陽系に近いものは、8.6光年の距離にある連星系シリウスの伴星であるシリウスBである。太陽に近い100個の恒星系には、8個の白色矮星が存在すると考えられている[5]。また、太陽近辺の褐色矮星より質量が大きい天体のうち、4分の1が白色矮星に占められていると考えられている[6]

白色矮星は、質量がおよそ10太陽質量に満たず、中性子星になるほど重くはない恒星進化の最終状態であり、銀河系にある恒星の97%以上がこのような進化をたどると考えられている[7]:§1。低質量から中質量の恒星が水素核融合を起こす主系列星の段階を終えた後、恒星は膨張して赤色巨星となり、この段階では巨星内部でのトリプルアルファ反応によってヘリウムから炭素酸素が合成される。赤色巨星の質量が軽く、コアが炭素の核融合を起こすのに必要な温度 (およそ10億K) に到達できない場合、核融合を起こせない炭素と酸素は恒星の中心部に蓄積する。このような恒星がその外層を放出して惑星状星雲を形成した後に、コアの部分が残される。これが残骸である白色矮星である[8]。通常は、白色矮星は炭素と酸素で構成される。白色矮星の前駆天体の質量が太陽質量の8倍ないし10.5倍であった場合、コアの温度は炭素の核融合を起こすには十分だがネオンの核融合には不十分な程度の温度となり、この場合は酸素・ネオン・マグネシウムからなる白色矮星が形成される[9]。非常に低質量の恒星はヘリウムの核融合を起こすことができないため[10][11]、連星系における質量損失によってヘリウムの白色矮星が形成されると考えられる。

白色矮星の物質はもはや核融合反応を起こせないため、天体はエネルギー源を持たない。その結果として、恒星のように核融合によって生成される熱で重力収縮に対抗して自身を支えられないが、電子の縮退圧のみによって支えているため非常に密度が高い。縮退に関する物理学から、自転していない白色矮星に対してはチャンドラセカール限界という質量の上限値が得られており、これはおよそ1.44太陽質量である。この質量を超えると、天体を電子の縮退圧で支えられなくなる。この質量限界に近付いた炭素-酸素白色矮星は、典型的には伴星からの質量輸送によって、炭素爆発として知られる過程を介してIa型超新星として爆発を起こす[3][8]SN 1006はその有名な例である。

白色矮星は形成された時点では非常に高温であるがエネルギー源を持たないため、エネルギーを放射するのに伴って徐々に冷却する。これは、白色矮星からの放射は初期は高い色温度を持つが、時間の経過に伴って放射は弱く赤くなっていくことを意味する。長い時間をかけて白色矮星は冷えていき、物質はコアから結晶化を開始する。天体の温度が低くなるということは十分な熱や光を放射できなくなることを意味しており、このような天体は冷たい黒色矮星となる[8]。白色矮星がこの状態に到達するのに必要な時間は現在の宇宙の年齢 (およそ138億年) よりも長いと計算されており[12]、黒色矮星はまだ存在していないと考えられる[3][7]。最も古い白色矮星は依然として数千ケルビンの温度での放射を行っている。
発見「コンパクト星の一覧#白色矮星」も参照

白色矮星は、エリダヌス座ο2星 (エリダヌス座40番星) の三重星系において初めて発見された。この星系は比較的明るい主系列星であるエリダヌス座ο2星Aと、その遠方を公転するBとCの近接連星からなり、Bが白色矮星、Cは主系列の赤色矮星である。エリダヌス座ο2星BとCのペアは、1783年1月31日にウィリアム・ハーシェルによって発見された[13]。1910年に、ヘンリー・ノリス・ラッセルエドワード・ピッカリングウィリアミーナ・フレミングは、エリダヌス座ο2星Bは暗い天体であるにもかかわらず、スペクトル型がA型、あるいは白い天体であることを発見した[14]。1939年にラッセルはこの発見を以下のように振り返っている[4]:1。

私は友人であり寛大な支援者であるエドワード・C・ピッカリング教授の元を訪れていました。彼は持ち前の優しさで、ヒンクス[注 1]と私がケンブリッジで行った恒星の年周視差の観測で観測した全ての星?比較星も含めて?を観測したいと申し出てくれました。この一見ルーチンワークに思える仕事は非常に実りの多いものであり、非常に暗い絶対等級を持つ全ての恒星はスペクトル型がM型であるという発見に繋がりました。この研究テーマについての会話の中で (私の記憶によれば)、私はピッカリングに私のリストに無い他の特定の暗い星について尋ね、特にエリダヌス座40番星Bに言及しました。いかにも彼らしいことですが、彼は天文台のオフィスにメモを送り、まもなくこの天体のスペクトル型はA型だったとの返事が来ました (フレミング夫人からだったと思います)。この大昔の時点においても、表面輝度と密度の「可能な」値と呼んでいたものの間には極端な矛盾があることが十分に分かりました。恒星の特徴の非常に優れた規則に見えたものに対するこの例外を前に、私は困惑しただけではなく意気消沈していたに違いありません。しかしピッカリングは私に微笑みかけ、「このような例外があるからこそ、我々の知識は進歩するのです」と言い、そして白色矮星は研究の領域に入ったのです!

エリダヌス座ο2星Bのスペクトル型は、公式には1914年にウォルター・シドニー・アダムズによって記述された[15]

シリウスの伴星であるシリウスBは、エリダヌス座ο2星Bの次に発見された白色矮星である。19世紀の間に、いくつかの恒星の位置測定はその位置の小さな変化を測定するのに十分な精度となった。フリードリヒ・ヴィルヘルム・ベッセルは位置測定を用いて、シリウスとプロキオンの位置が周期的に変化していることを突き止めた。1844年に、彼は双方の恒星が見えない伴星を持っていると予測した[16]

シリウスとプロキオンが連星であると考えれば、その運動の変化は驚くべきものではない。我々は必要に応じてそれを受け入れ、その量を観測によって調べれば良いのである。しかし光は質量の本当の特性ではない。無数の目に見える星の存在は、無数の目に見えない星の存在に対して何も証明することはできない。

ベッセルはシリウスの伴星の周期をおよそ半世紀と概算した[16]クリスチャン・A・F・ペーテルスは1851年にその軌道を計算した[17]。1862年1月31日になって初めて、アルヴァン・グラハム・クラークがそれまで発見されていなかったシリウスに近い天体を観測し、これは後に存在が予測されていた伴星であることが確認された[17]。1915年にはウォルター・シドニー・アダムズが、シリウスBのスペクトルはシリウスのものと類似していることを発見したと公表した[18]

1917年に、アドリアン・ヴァン・マーネンは孤立した白色矮星であるヴァン・マーネン星を発見した[19]。これらの初めて発見された3つの白色矮星は、いわゆる「古典的な白色矮星」(classical white dwarfs) である[4]:2。その後多数の暗く白い天体が発見され、これらの固有運動が大きいことから、これらの天体は地球に近い位置にある低光度の天体、すなわち白色矮星である可能性があることが示唆された。ウィレム・ヤコブ・ルイテンが1922年にこの分類の天体の調査を行った際に、white dwarf という用語を初めて用いたと考えられる[14][20][21][22][23]。この名称は後にアーサー・エディントンによって普及された[14][24]。これらの存在の疑いがあったにもかかわらず、最初の非古典的な白色矮星の存在が明確に同定されたのは1930年代になってからであった。1939年までに18個の白色矮星が発見された[4]:3。ルイテンらは1940年代も白色矮星の探査を継続した。1950年までには100個を超える白色矮星が発見され[25]、さらに1999年までには2000個以上の存在が知られていた[26]。それ以降、スローン・デジタル・スカイサーベイが9000個を超える白色矮星を発見しており、その大部分は新しいものである[27]
組成と構造HR図スペクトル型YSOT Tauri型星Herbig Ae/Be型星褐色矮星準褐色矮星白色
矮星


準矮星B主系列星OBAFGK準巨星巨星バリウム星赤色
巨星
青色
巨星
輝巨星超巨星赤色
超巨星
LBVWR型星極超巨星


天王星海王星地球金星などに囲まれている中央の白い星が白色矮星のシリウスB。地球とほぼ同じ大きさであるが、質量は太陽と同程度である。

白色矮星の推定質量は、小さいものは0.17太陽質量[28]、大きいものは1.33太陽質量のものが知られているが[29]、質量分布は0.6太陽質量に強い極大を持ち、また大多数が0.5?0.7太陽質量の間にある[29]。観測されている白色矮星の推定半径は、典型的には太陽半径の 0.8-2% であり[30]、これは太陽半径のおよそ 0.9% である地球の半径と同程度である。すなわち白色矮星は、太陽と同程度の質量が太陽よりも典型的に100万倍も小さい体積の中に押し込められた天体である。したがって白色矮星の物質の平均密度は、非常に大まかには太陽の平均密度の100万倍大きく、およそ 106 グラム立方センチメートル、あるいは1立方センチメートルあたり1トンである[3]。典型的な白色矮星の密度は、104-107 g/cm3 である。白色矮星は知られている中で最も高密度な物質からなる天体の一つであり、これを超える密度を持つのは、中性子星クオーク星 (仮説上の天体)[31]、そしてブラックホールといった他のコンパクト星のみである。

白色矮星は発見されてまもなく、非常に高密度であることが判明した。シリウスBやエリダヌス座ο2星Bのように天体が連星系にある場合、連星軌道の観測から質量を推定することが可能となる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:250 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef