疫学における区画モデル
[Wikipedia|▼Menu]

区画モデル(くかくモデル、: Compartmental model)は、感染症の数理モデル化(英語版)を単純化する。集団はラベル付きの区画に割り当てられる。例えば、S、I、またはR(それぞれSusceptible〈感受性保持者〉、Infectious〈感染者〉、またはRecovered〈免疫保持者〉)のようなラベルが付けられる。人々は区画間を進むことができる。ラベルの順番は通常、区画間の流れの様式を示している。例えば、SEISは、感受性(susceptible)、曝露(exposed)、感染(infectious)、そして再び感受性(susceptible)を意味する。

こういったモデルの起源は20世紀初頭であり、1927年のカーマック(英語版)とマッケンドリック(英語版)の研究が重要である[1]

モデルは(決定論的である)常微分方程式を用いて実行されることが多いが、確率論的(ランダム)な枠組みを用いることも可能である。確率論的モデルはより現実的ではあるが解析がはるかに複雑である。

モデルは、病気がどのように広がるか、感染者の総数、流行の期間などを予測し、再生産数などの様々な疫学的パラメータを推定しようとする。このようなモデルは、異なる公衆衛生上の介入が流行の結果にどのように影響を与えるかを示すことができる。例えば、与えられた集団に限られた数のワクチンを接種するために最も効率的な手法は何かを示すことができる。
SIRモデル詳細は「SIRモデル」を参照

SIRモデルは最も単純な区画モデルの1つであり、多くのモデルはこの基本形から派生している。本モデルは3つの区画で構成されている。
S
感受性(susceptible)個体の数。感受性個体と感染個体が「感染性接触」すると、感受性個体が病気に感染し、感染性区画に移行する。
I
感染(infectious)個体数のこと。感染した個体であり、感受性個体を感染させる可能性がある。
R
隔離(removed)(免疫のある)個体、または死亡した個体の数。これらは、感染から回復して隔離区画に入った個体、または死亡した個体である。死亡者数は総人口に対して無視できるほどの数であると仮定している。この区画を「回復(recovered)」または「抵抗性(resistant)」と呼ぶこともある。

このモデルは、麻疹おたふくかぜ風疹といった、回復が持続的な抵抗性をもたらし、ヒトからヒトへ感染する感染症について合理的に予測可能である[要出典]。空間SIRモデルシミュレーション。個々のセルは隣接した8つの区画を感染させることができる。

これらの変数(S、I、R)は、特定の時間に各区画にいる人の数を表す。感受性個体、感染個体、隔離個体の数が(総人口サイズが一定であっても)時間とともに変化する可能性があることを表すために、正確な数をt(時間)の関数S(t)、I(t)、R(t) とする。特定の集団における特定の疾患については、これらの関数は、可能性のあるアウトブレイクを予測し、それらを制御下に置くために働くかもしれない[要出典]。
SIRモデルは3つの意味で動的である

tの変数関数で表わされるように、本モデルは各区画内の数が時間の経過とともに変動するという意味で動的である。この動的な側面の重要性は、1968年にワクチンが導入される前の英国の麻疹のように、感染期間が短い風土病において最も明白である。このような病気は、感受性保持者数(S(t))が時間の経過とともに変化するため、何度も流行する傾向がある。伝染病が流行すると、より多くの感受性保持者が感染区画に入るため、感受性保持者の数が急激に減少し、彼らは感染区画と隔離区画に入ることになる。生まれた子どもが感受性区画に入るなどして、感受性個体の数が回復するまでは、病気が再び流行することはできない。黄色=感受性、えび茶色=感染、鴨の羽色=回復

集団の各メンバーは、通常、感受性区画から感染性区画へ、そして隔離区画へと進行する。これは以下のような、箱が異なる区画を表し、矢印が区画間の遷移を表すフロー図として示すことができる。SIR compartment model
遷移速度

モデルを完全に明確に記述するためには、矢印を区画間の遷移速度でラベル付けするべきである。SとIの間では、遷移速度をd(S/N)/dt = -βSI/N2と仮定する。ここで、Nは総人口、βは時間当たりの1人当たりの平均接触数に感受性保持者と感染者の間の接触における病気の伝播確率を乗じたもの、SI/N2は感受性保持者と感染者の間の接触のうち、感受性保持者が感染することになる接触の割合である(これは数学的には、分子間のランダムな衝突が化学反応を引き起こし、分率が2つの反応物の濃度に比例するという化学の質量作用の法則に似ている)。

IとRの間では、遷移速度は感染個体数に比例すると仮定し、これをγIとする。これは、任意の時間間隔dtにおいて感染個体が回復する確率が単純にγdtであると仮定していることと等価である。ある個体が平均的な時間間隔Dで感染している場合、γ = 1/Dとなる。これは、個人が感染状態にある時間の長さが指数分布を持つランダム変数であるという仮定と等価である。この「古典的」SIRモデルは、I-R遷移速度のためにより複雑で現実的な分布(例えば、アーラン分布[2])を使用することによって修正することができる。

感染区画からの除去(隔離)がない特別な場合 (γ=0) では、SIRモデルは、すべての個体が最終的に感染するロジスティック解を持つ非常に単純なSIモデルに簡約される。
SIRモデルの生物数理学的・決定論的取り扱い
人口動態がないSIRモデル

伝染病(例えばインフルエンザ)の動態は、出生と死亡の動態よりもはるかに速いことが多いため、単純な区画モデルでは出生と死亡が省略されることが多い。先に述べたいわゆる人口動態(出生および死亡)を考慮しないSIRシステムは以下の一組の常微分方程式で表わすことができる[3]。 d S d t = − β I S N , d I d t = β I S N − γ I , d R d t = γ I . {\displaystyle {\begin{aligned}&{\frac {dS}{dt}}=-{\frac {\beta IS}{N}},\\[6pt]&{\frac {dI}{dt}}={\frac {\beta IS}{N}}-\gamma I,\\[6pt]&{\frac {dR}{dt}}=\gamma I.\end{aligned}}}

上式において、 S {\displaystyle S} は感受性集団のストック、 I {\displaystyle I} は感染集団のストック、 R {\displaystyle R} は隔離集団のストック(死亡または回復による)、そして N {\displaystyle N} はこれら3つの和である。

このモデルは、ウィリアム・オグルヴィ・カーマックとアンダーソン・グレイ・マッケンドリックによって、現在カーマック・マッケンドリック理論と呼ばれているものの特別な場合として初めて提案されたものであり、マッケンドリックがロナルド・ロスと共に行った研究に続いて行われた。

このシステムは非線形であるが、陰関数形式でその解析解を導出することが可能である[4]。他の数値計算ツールとしては、ギレスピー・アルゴリズム(英語版)といったモンテカルロ法がある。

第1に、 d S d t + d I d t + d R d t = 0 {\displaystyle {\frac {dS}{dt}}+{\frac {dI}{dt}}+{\frac {dR}{dt}}=0}

から、 S ( t ) + I ( t ) + R ( t ) = 一定 = N {\displaystyle S(t)+I(t)+R(t)={\text{一定}}=N}

となる。この式は数学的に人口 N {\displaystyle N} の恒常性を表わしている。

ここで留意すべきは、上記の関係は3つの変数のうち2つに関する式だけを調べる必要があることを示唆している点である。

第2に、伝染病クラスの動態が比率 R 0 = β γ , {\displaystyle R_{0}={\frac {\beta }{\gamma }},}

いわゆる基本再生産数(基本再生産率とも)に依存することに注目する。この比率は、すべての対象者が感受性である集団における1つの感染からの新規感染(これらの新規感染は二次感染と呼ばれることもある)の予想数として導き出される[5][6]。この考えは、接触の間の典型的な時間は T c = β − 1 {\displaystyle T_{c}=\beta ^{-1}} であり、隔離までの典型的な時間は T r = γ − 1 {\displaystyle T_{r}=\gamma ^{-1}} であると言えば、おそらくもっとわかりやすいだろう。ここから、平均して、感染者が隔離される「前」に他の人と接触した回数は T r / T c {\displaystyle T_{r}/T_{c}} となる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:117 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef