特性曲線法
[Wikipedia|▼Menu]

数学において特性曲線法(とくせいきょくせんほう、: method of characteristics)とは、偏微分方程式に対する一つの解法である。一般には一階偏微分方程式に対して適用されるが、任意の双曲型偏微分方程式に対するより一般の特性曲線法も存在する。この方法では偏微分方程式を、常微分方程式の族に書き下し、適切な超曲面上で与えられたいくつかの初期データより積分されることによってその線に沿った解が得られる。
一階偏微分方程式の特性曲線

一階の偏微分方程式(PDE)に対する特性曲線法では、それが常微分方程式(ODE)となるようなある曲線(特性曲線あるいは単に特性線と呼ばれる)を探すことになる。そのようなODEが見つかれば、特性曲線に沿って解いた後に元のPDEに対して解を変換すれば良いことになる。

ここで、二つの独立変数 x と y の函数のケースを取り上げる。次の形の準線型[要曖昧さ回避]偏微分方程式を考える: a ( x , y , z ) ∂ z ∂ x + b ( x , y , z ) ∂ z ∂ y = c ( x , y , z ) . {\displaystyle a(x,y,z){\frac {\partial z}{\partial x}}+b(x,y,z){\frac {\partial z}{\partial y}}=c(x,y,z).} (1)

ここで、解 z が得られたとして、R3 内の曲面のグラフ z = z(x,y) を考える。この曲面に対する法線ベクトルは次で与えられる。 ( ∂ z ∂ x ( x , y ) , ∂ z ∂ y ( x , y ) , − 1 ) . {\displaystyle \left({\frac {\partial z}{\partial x}}(x,y),{\frac {\partial z}{\partial y}}(x,y),-1\right).\,}

これは次のようにして分かる。x,y方向の接ベクトルをそれぞれ n 1 {\displaystyle n_{1}} , n 2 {\displaystyle n_{2}} とすると、これらは例えば n 1 = ( 1 , 0 , ∂ z / ∂ x ) d x {\displaystyle n_{1}=(1,0,\partial z/\partial x)dx} , n 2 = ( 0 , 1 , ∂ z / ∂ y ) d y {\displaystyle n_{2}=(0,1,\partial z/\partial y)dy} となる。これらの外積から上述の法線ベクトル(と平行なベクトル)が得られる。

したがって[1]式 (1) は、ベクトル場 ( a ( x , y , z ) , b ( x , y , z ) , c ( x , y , z ) ) {\displaystyle (a(x,y,z),b(x,y,z),c(x,y,z))\,}

が全ての点において曲面 z = z(x, y) に接するという幾何学的な内容を意味する。言い換えると、解はこのベクトル場の積分曲線の合併となる。これらの積分曲線は、元の偏微分方程式の特性曲線と呼ばれる。

特性曲線の方程式は、ラグランジュ=シャルピ方程式によって次のように不変な形で表すことが出来る[2]: d x a ( x , y , z ) = d y b ( x , y , z ) = d z c ( x , y , z ) . {\displaystyle {\frac {dx}{a(x,y,z)}}={\frac {dy}{b(x,y,z)}}={\frac {dz}{c(x,y,z)}}.}

また、この曲線のパラメータ化 t が固定された場合、これらの方程式は x(t), y(t), z(t) に対する次の連立常微分方程式として書くことが出来る。 d x d t = a ( x , y , z ) , d y d t = b ( x , y , z ) , d z d t = c ( x , y , z ) . {\displaystyle {\begin{aligned}{\frac {dx}{dt}}&=a(x,y,z),\\{\frac {dy}{dt}}&=b(x,y,z),\\{\frac {dz}{dt}}&=c(x,y,z).\end{aligned}}}

これらを元の偏微分方程式の特性方程式 (characteristic equation) という。
線型と準線型の場合

次の形式のPDEを考える。 ∑ i = 1 n a i ( x 1 , … , x n , u ) ∂ u ∂ x i = c ( x 1 , … , x n , u ) . {\displaystyle \sum _{i=1}^{n}a_{i}(x_{1},\dots ,x_{n},u){\frac {\partial u}{\partial x_{i}}}=c(x_{1},\dots ,x_{n},u).}

このPDEを線型とするためには、係数 ai は空間変数のみに依存し、u には独立とすればよい。準線型とするためには、ai はその函数の値にも依存するが、導函数には依存しないものとすればよい。これら二つのケースの区別は、ここでの議論では本質的ではない。

線型あるいは準線型のPDEに対し、特性曲線はパラメータ的に次で与えられる。 ( x 1 , … , x n , u ) = ( x 1 ( s ) , … , x n ( s ) , u ( s ) ) {\displaystyle (x_{1},\dots ,x_{n},u)=(x_{1}(s),\dots ,x_{n}(s),u(s))}

但し次の常微分方程式系が満たされるものとする。 d x i d s = a i ( x 1 , … , x n , u ) {\displaystyle {\frac {dx_{i}}{ds}}=a_{i}(x_{1},\dots ,x_{n},u)} (2) d u d s = c ( x 1 , … , x n , u ) . {\displaystyle {\frac {du}{ds}}=c(x_{1},\dots ,x_{n},u).} (3)

式 (2) と (3) が、元のPDEの特性曲線である。
完全に非線型の場合

次の偏微分方程式を考える。 F ( x 1 , … , x n , u , p 1 , … , p n ) = 0 {\displaystyle F(x_{1},\dots ,x_{n},u,p_{1},\dots ,p_{n})=0} (4)

ここで変数 pi は次の偏微分を略記したものである。 p i = ∂ u ∂ x i . {\displaystyle p_{i}={\frac {\partial u}{\partial x_{i}}}.}

Rn+1 内の超曲面 (xi, u) が偏微分方程式の解であるとする。解の超曲面の上にある任意の滑らかな(微分可能な)曲線を特性曲線と言い、s を曲線長さに沿うパラメータとして、曲線上の各点は次のように表されるものとする。 u ( s ) = u ( x 1 ( s ) , … , x n ( s ) ) . {\displaystyle u(s)=u(x_{1}(s),\dots ,x_{n}(s)).}

また、解の曲面の方向は、この特性曲線の各点での接線の傾き p i = ∂ u ∂ x i {\displaystyle p_{i}={\frac {\partial u}{\partial x_{i}}}} により指定されているとする。解に沿って (4)を s に関して微分すると、次が得られる。 ∑ i ( F x i + F u p i ) x ˙ i + ∑ i F p i p ˙ i = 0 {\displaystyle \sum _{i}(F_{x_{i}}+F_{u}p_{i}){\dot {x}}_{i}+\sum _{i}F_{p_{i}}{\dot {p}}_{i}=0} (5) u ˙ − ∑ i p i x ˙ i = 0 {\displaystyle {\dot {u}}-\sum _{i}p_{i}{\dot {x}}_{i}=0} (6) ∑ i ( x ˙ i d p i − p ˙ i d x i ) = 0. {\displaystyle \sum _{i}({\dot {x}}_{i}dp_{i}-{\dot {p}}_{i}dx_{i})=0.} (7)


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:46 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef