燃料噴射装置
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、ガソリンエンジンの燃料供給装置の一例について説明しています。ディーゼルエンジンの高圧燃料噴射装置については「噴射ポンプ」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "燃料噴射装置" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2020年2月)

燃料噴射装置(ねんりょうふんしゃそうち、: Fuel injection system)は、予混合燃焼機関で、液体燃料を吸入空気に霧状に噴射する装置である。
概要

ガソリンエンジンディーゼルエンジンなどの内燃機関では燃料をシリンダー内部で一瞬で爆発的に燃焼させるため、液体の燃料を霧状にしてシリンダーに送り込む必要がある。

実用的な燃料気化装置としてまず実用化されたのは、ベンチュリー効果を利用した、より簡便で単純なキャブレターであり、20世紀中には広く用いられた。しかしその簡便さゆえ、年々強化される自動車排出ガス規制にキャブレターでは適合させられなくなるなど、技術的限界に直面するようになり、また電子技術の進歩に伴い、2001年以降は自動車用途では電子制御式燃料噴射装置がほぼ全面的に採用され、キャブレターを駆逐した。一方で電子制御式は作動には電源をはじめ、加圧ポンプやコントロールユニットなどの補機類が必要で、装置の構造が複雑精密、かつ高価になることから、一部の可搬式作業機械用エンジンなどでは、キャブレターがいまだに使われている。
歴史

キャブレターは気圧や温度といった外気の状態変化に左右されやすく、高度で大気状態が極端に変化する航空機では状況に応じた対応が難しかった。また重力を利用しているため、装置の上下が逆になったり、逆Gがかかる機動を行う戦闘機用途では、燃料が途切れてエンジンが停止する問題があった。そのため重力や空力に頼らず、ガソリンを直に加圧してスプレーする方式が早くから研究され、あるものは機械式燃料噴射装置として実用化された。

機械式燃料噴射装置は第二次世界大戦終結までのドイツ空軍航空用エンジンとして盛んに用いられた。メッサーシュミット Bf109は、他国の戦闘機がキャブレターを搭載していた当時に燃料噴射装置を採用し、マイナスGのかかる逆宙返りや背面飛行が可能だった。日本イタリアでもライセンス生産され、燃料噴射装置は三菱重工業が開発・製造した航空機用エンジンの火星後期型や金星末期型に採用された。

自動車への適用は1954年に発表されたメルセデス・ベンツ・300SLが最初であり、同時に自動車用としては世界初のガソリン直噴エンジンでもあった。その後アメリカ、特にカリフォルニア州で環境意識の高まりから排ガス規制が厳格化されると、汚染物質の排出原因である、シリンダー内の燃料の不完全燃焼問題を解決するため、より精密なエンジン制御が求められるようになった。これは機械式キャブレターでは対応しきれない要求であった。そこで自動車メーカー各社は当時発達しつつあったデジタル技術による燃料供給の制御化に積極的に取り組み、燃料噴射は車載マイコンエンジンコントロールユニット(ECU)のプログラムに制御されるようになり、噴射量や噴射タイミングをエンジンの負荷回転速度といった運転状況に応じてきめ細かく変化させるようになった。これにより排出ガスに含まれる有害成分を低減することだけでなく、出力や始動性の向上、燃費の改善が可能となった。

レシプロエンジン民間用航空機では電子制御式燃料噴射装置の採用は、電子制御の信頼性が確立されていないなどの理由で自動車用に比べるとやや遅かったが、1990年代以降はほぼ全面的に置き換わった。高度により大気圧(空気密度)が変化する航空機では空燃比コントロール操作が操縦者の負担であったが、電子制御により自動化が容易となった。

オートバイでは1980年代本田技研工業が電子制御の燃料噴射装置付きエンジンを実用化し、日本国内市販車では1982年昭和57年)に川崎重工業のZ750GP(Z750V1)に初めて採用された。また、WGPが2ストロークに有利な規定だったこともあって、モータースポーツの世界では1994年に登場したホンダ・RVF750/RC45が登場するまでは使用されていなかった。そのため、ホンダ以外の各メーカーはヤマハは1999年に限定発売されたYZF-R7が初採用であり、スズキは1998年に発売されたTL1000Rが、カワサキに至ってはMotoGPに参戦するまでキャブレターを採用していた。一方で、2003年平成15年)10月3日には本田技研工業原動機付自転車用49 cc4ストロークエンジンを搭載した。2004年(平成16年)10月にスズキが燃料を重力落下式とし、燃料ポンプ噴射ノズルを一体化したディスチャージポンプ式49 cc4ストロークエンジンをレッツ4に搭載した。この方式では燃料ポンプと高圧に耐える燃料パイプが不要となり、コストを低減させるとともに機構の信頼性を確保した。オートバイ用として燃料噴射装置が普及するようになるとスロットル開度に対するエンジン出力上昇が急速な特性を緩和する方策をとる車種も登場した[1]。これは1つの吸気経路に2つのバタフライバルブを直列に設け一方をアクセルワイヤーで動作。もう一方はECUで制御されたアクチュエーターモーターで動作させるツインバルブとも呼ばれる機構で、ECU制御バルブは運転手の操作に対するスロットル開度の応答を抑える働きをする[1]。排気量が比較的大きな車種に採用される。

2ストロークエンジンでは、船外機スノーモービルで採用されている。1990年代に本田技研工業がレース用バイクのNSR500に採用したが、市販車への採用は見送られた。海外ではビモータが1997年に筒内直噴インジェクションを採用した500V dueを市販したが、制御面での不具合が頻発し早期に販売を終了している(この失敗が同社が倒産する最大の要因になった)。コロラド州立大学の支援を受けて非営利企業のEnviroFitは東南アジアにおける大気汚染を減らすため、オービタル社の開発した技術を基に2ストローク自動二輪向けの改造キットを開発した。
動作原理フュエル・インジェクター構造図

燃料タンクに備え付けられた燃料ポンプにより燃料系統パイプに常時高い圧力(燃料圧力)が掛けられる。燃料系統パイプの末端に設けられたインジェクターは、電気信号の入力で内部のプランジャーが作動、もしくは機械式噴射ポンプによって高圧となった燃料により開弁することで、スプレーチップ先端のノズルからインテークマニホールド内の吸気ポート付近に燃料を噴射する。

電子制御式インジェクターは1分間に噴射できる燃料(300cc/min等の数値で判別できる)が定められており、エンジンの排気量や性能に応じて最適な容量のインジェクターが設計時に選択される。規定噴射量はごく簡単にはキャブレターにおけるメインジェットと同様に、先端のノズルの孔径によってほぼ決定され、孔が大きくなる程同じ燃料圧力でもより多くの燃料が噴射できる。逆に、ノズルの孔径が同じであっても規定の燃料圧力が異なる場合には燃料圧力が高い程より多くの燃料を噴射できる。

実際にエンジン内に噴射される燃料の量はインジェクターの1分当たり噴射量と開弁時間、及び燃料圧力レギュレータによって決定された燃料圧力によって制御されている。基本的な噴射時間はエアフロメーターで計測された吸入空気量により決定されるが、そのままではラフなアクセル操作などにより急激に燃調が濃くなった際にエンジンが不調となったり、排気ガスの濃度が増すため、排気管内に設けられたO2センサーで空燃比を計測し、その計測結果に応じて開弁時間の補正を行うことで高性能と排出ガスの低エミッション化を両立している。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:114 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef