熱水噴出孔
[Wikipedia|▼Menu]
熱水噴出孔の一種、ブラックスモーカー熱水噴出孔の音

熱水噴出孔(ねっすいふんしゅつこう、英語: hydrothermal vent)は、地熱で熱せられたが噴出する大地の亀裂である。広義の熱水噴出孔としては温泉噴気孔間欠泉が含まれるが、狭義にはこれらの陸上にあるものではなく、海底環境、特に深海の熱水噴出孔(深海熱水噴出孔)を指す。熱水噴出孔の英語表記やその構造物から、ベント(vent)やチムニー(chimney)と呼ばれることもある。

熱水噴出孔の大半は、火山活動が活発な海域(発散的プレート境界海盆ホットスポット)から発見されている[1]。吹き出す熱水は数百度にも達する事があり、溶存成分として重金属硫化水素を豊富に含むものも知られている。海底から噴出する熱水に含まれる金属などが析出沈殿してチムニーと呼ばれる構造物ができる場合がある。熱水の溶存成分によってはチムニーから黒色や白色の煙が吹き出しているように見えるため、一部の熱水噴出孔は「ブラックスモーカー」や「ホワイトスモーカー」と呼称される場合もある。また、熱水噴出孔の作用によって形成された岩石および鉱石堆積物を熱水堆積物と呼ぶ。

深海の大部分と比べて、熱水噴出孔周辺では生物活動が活発であり、噴出する熱水中に溶解した各種化学物質に依存した複雑な生態系が成立している。有機物合成を行う細菌古細菌食物連鎖の最底辺を支える他、化学合成細菌と共生したり環境中の化学合成細菌のバイオフィルムなどを摂食するジャイアントチューブワーム二枚貝エビなどの大型生物もみられる。

地球外では、木星衛星エウロパ土星の衛星エンケラドスにおいても熱水活動が活発であり、熱水噴出孔が存在するとみられている[2][3]。また、古代には火星面にも存在したと考えられている[1][4]
物理的特性この相図では、緑の点線は融点を、青の線は沸点を示し、水の状態が圧力によってどのように変化するかを示している。緑の実線は、一般的な物質の典型的な融点の挙動を示している。380?415°Cの臨界領域における気液境界の実験結果

深海熱水噴出孔は通常、東太平洋海嶺中部大西洋海嶺などの、2つの構造プレートが分岐し、マントルプリュームが上昇して新しい地殻が形成される場所で見られる[5]。熱水噴出孔から出てくる水は、主に近辺の火山層中の断層や多孔質堆積物を通じて染み込み火山性の地熱構造で熱せられた海水と、湧昇するマグマから放出されたマグマ水、の2種から構成される[1]。一方で、噴気孔間欠泉といった陸上の熱水システムにおいては、循環する水の大部分は地表から熱水システムに浸透した天水(雨水)と地下水であり、一部で変成水やマグマに由来するマグマ水、堆積層中で塩類を溶解した塩水なども含まれる。その割合は、それぞれの場所によって異なる。

一般的に深海の海水温は約2 °C (36 °F)程度であるのに対し、熱水噴出孔周囲の水温は60 °C (140 °F)になり[6]、最高で464 °C (867 °F) にも達する例が知られている[7][8]。これは、深海ではその水深のため静水圧が高く、高温であっても水は気体にならずに液体の形で存在しているためである。純水の臨界点の温度は375 °C (707 °F) であり、圧力は218気圧である。さらに、純粋ではなく塩分を含む水の場合、高温と高圧の臨界点はさらに上昇する。海水(重量比で3.2%のNaClを含む)の臨界点は、298.5大気圧下で407 °C (765 °F)であり[9][10]、これは深さ2,960メートル (9,710 ft)の水圧環境下に対応する。したがって、この塩分濃度と深さの場合、熱水の温度が407 °C (765 °F)を超えると超臨界水となる。さらに、地殻の相分離のために、熱水噴出孔から吹き出す流体中の塩分は、時おり大きく変動することが知られている[11]。同一の圧力条件下において、塩分濃度の低い液体の臨界点温度は、海水よりも低く、純水よりも高くなる。たとえば、280.5大気圧下で2.24%のNaCl溶液の臨界点温度は400 °C (752 °F)である。したがって、熱水噴出孔の最も高温の部分の水は、気体液体の間の物理的性質を持つ、いわゆる超臨界流体である可能性がある[12][13]。実際にいくつかの噴出孔において、超臨界状態が観察されている。しかしながら、熱水循環、鉱物堆積物形成、地球化学フラックス、そして生物活性の点で、この超臨界がどのような影響を与えるのかは、まだよく判明していない。
チムニーの成長と熱水の例

熱水噴出孔によってはチムニー(煙突)とよばれる円柱状の構造物を形成することがある。超高温の熱水に溶解している鉱物が0°Cに近い海水と接触すると、接触面で化学反応が進み生成物が析出・沈殿して、このようなチムニーができる。チムニー形成の初期段階は、鉱物の無水石膏の堆積から始まる。次に、亜鉛などの硫化物が海水の境界面で析出してチムニーの隙間に沈殿し、時間の経過とともにチムニーの多孔性が低下する。今までの研究から、一日あたり30センチメートル (1 ft)程度も成長したチムニーが記録されている[14]。チムニーの例としては、オレゴン州の沖合にある高さ40mで折れてしまった、通称『ゴジラ』と呼ばれるものが知られる。チムニーのなかには高さ60mに達するものもある[15]。2007年4月のフィジー沿岸沖の深海ベントの調査では、これらのベントが溶存鉄の重要な供給源であることが判明している[16]ブラックスモーカーは、1979年に北緯21度の東太平洋海上で最初に発見された。

チムニー構造で黒色の熱水を噴出するものは、黒い煙を放出する煙突のように見えるため、ブラックスモーカーと呼ばれる。ブラックスモーカーは通常、海底(水深2,500-3,000 m)でよく見られるが、より浅層や深層でも発見されている[1]。ブラックスモーカーは通常、地殻から熱水に溶け混んだ高レベルの硫黄含有ミネラルや硫化物を含む粒子を放出しており、水は400℃以上の高温に達することもある。地球の地殻の下から過熱された熱水が海底を通過する際に幅数百メートルに広がり、近辺で複数のブラックスモーカーが形成される[1]。冷たい海の水と接触すると、多くのミネラルが沈殿し、各孔の周りに黒い煙突のような構造(チムニー)を形成する。この堆積した金属硫化物は、ゆくゆくは塊状の硫化鉱床になる可能性がある。大西洋中央海嶺アゾレス諸島の一部のブラックスモーカーは、24,000μMのを含む熱水を放出するレインボーベントフィールドなど、金属含有量が非常に豊富なことが知られている[17]

ブラックスモーカーは、RISEプロジェクト中にスクリップス海洋研究所の研究者によって、1979年に東太平洋海嶺から発見され、ウッズホール海洋研究所の深海潜水艇ALVIN号を用いて観測された[18]。現在、ブラックスモーカーは大西洋太平洋に、平均2,100mの深度で存在することが知られている。最も北に位置するブラックスモーカーは、グリーンランドノルウェーの間の大西洋中央海嶺北緯73度の位置から、ベルゲン大学の研究者によって2008年に発見された、「ロキの城(Loki's Castle)」と名付けられたフィールドの5本のチムニーからなるクラスターである[19]。これらのブラックスモーカーは、地殻変動力が少ない安定した地殻領域にあり、熱水噴出孔のフィールドとしてはあまり一般的ではないため、興味がもたれている[20]。また、他の世界で最も有名なブラックスモーカーの一つはケイマントラフにあり、5,000 mの海面下に存在する[21]

一方で、ホワイトスモーカーと呼ばれるチムニーからは、バリウムカルシウムシリコンなどの明るい色のミネラルが放出される。これらのベントは、おそらく熱源から一般に離れているため、プルームが低温になる傾向がある[1]

ブラックとホワイトのチムニーは、同じ熱水フィールドで共存する可能性があり、それぞれ一般的に、熱源に対して近位か遠位かで分かれる。また、マグマが冷えて結晶化が進むことにより熱源から次第に遠ざかり、熱水もマグマ水ではなく海水の影響が大きくなるに従って(すなわち熱水域の衰退段階に対応する形で)、ホワイトスモーカーが成立することもある。このタイプのベントから吹き出す熱水はカルシウムが豊富で、主に硫酸塩(重晶石と無水石膏)や炭酸塩に富む堆積物を形成する[1]

一方で、沖縄トラフ鳩間海丘からは有人潜水調査船しんかい6500による探査により、新たにブルースモーカーが発見された。この色の解明は、今後の調査を待つ段階である[22]
熱水噴出孔周辺の生態系

かつては、太陽エネルギーこそがあらゆる生命エネルギーの源であると考えられてきた。しかしながら深海生物は、太陽光の恩恵を受けることができない深海環境に生息している。以前の底生生物研究においては、熱水噴出孔周辺の生物のエネルギー獲得は深海生物と同様にマリンスノーに依存していると考えられてきた。すなわち、マリンスノーの大本である表層海域の植物プランクトンに依存した、つまり大枠としては太陽に依存した生態系の一部とみなされていた。一部の熱水噴出孔周辺の生物は、たしかにこの太陽からのエネルギー源を消費することが知られている。しかしながら、もし仮にすべてが太陽依存のシステムに存在している状況であれば、熱水噴出孔周辺の生物はもっと疎(低密度)になるはずである。ところが実際には、周囲の海底と比較して熱水噴出帯の生物密度は10,000?100,000倍ほどもあることが知られている。

そのため熱水噴出孔周辺の生態系は主要なエネルギー源を、太陽エネルギーではなく熱水噴出孔(すなわち熱水)に依存していると考えられる。熱水噴出孔からの水は溶解したミネラルが豊富であり、それらを利用する化学独立栄養生物(バクテリアアーキアなどの原核生物)が繁茂し、大規模な集団を形成する。そして、それらの化学合成生物に依存する他の生物がベント周辺に生息することで、熱水ベント周辺では膨大な量の生命を維持することができると考えられる。これらの原核生物は、硫黄化合物、特に硫化水素といった、ほとんどの生物種にとって有毒な化学物質を利用して、化学合成により有機物を生産する。これらのコミュニティは「太陽と独立して存在する」としばしば形容されるが、しかしながら一部の生物は実際には光合成生物によって生成される酸素に依存する、いわゆる好気性生物である。東スコシアプレートの海嶺にあるチムニー周辺の密集した生態系(写真はKiwa anomuransとVulcanolepasの仲間の付着性フジツボ)。ガラパゴスリフトのベント周辺に生息するチューブワーム(Riftia pachyptila)。
微生物生態系

熱水噴出孔が見られるような深度は、通常の海域であれば、一般的には生物活動は非常に希薄である。しかしながらチムニー周辺は、独自の生態系が形成される。日光は存在しないため、多くの生物、特に古細菌極限環境微生物などによって駆動される化学合成プロセスを通じて、チムニーから提供される熱、メタン硫黄化合物などがエネルギーに変換される。そのため、熱水噴出孔周辺の生物社会は、一次生産者であるバクテリアアーキアに大きく依存していると言える。熱水噴出孔から噴出する水は豊かな鉱物資源を溶解しており、有機物合成をするバクテリアの大量増殖を可能にしている。これらのバクテリアは、各種硫化物から有機物を合成するものが多く知られている。また、熱水噴出孔の海底地殻内に生息する好熱性の微生物も、熱水に巻き込まれて大量に噴出している。多くはバクテリアだが、温度の上昇に伴いサーモコッカス(Thermococcus)やメタノカルドコッカス(Methanocaldcoccus)といったアーキアの割合が増加する。

メキシコ沿岸沖の、日光が全く届かない深さ2,500メートル (8,200 ft)に位置するブラックスモーカー周辺で、光合成細菌の種が発見されている。緑色硫黄細菌に属するChlorobiaceaeファミリーの一部であるこれらの細菌は、太陽光ではなくチムニーからのかすかな赤外光を利用して、光合成を駆動している。これは、太陽光以外の光のみを利用して光合成を行う、自然界で発見された最初の生物である[23]
大型生物ブラックスモーカーの周りに棲息するチューブワーム

バクテリアは増殖して厚いマット状に広がり、これを餌にする端脚類カイアシ類などが集まってくる。そして巻貝エビカニチューブワーム魚類タコなどより大きな生物とともに食物連鎖を形成する。このようにしてできる生態系は熱水噴出孔をエネルギーの供給源として存続し、太陽エネルギーに依存する地表の生態系とは異なる体系をつくる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:126 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef