焼戻し
[Wikipedia|▼Menu]

焼戻し(やきもどし、英語: tempering)とは、焼入れあるいは溶体化処理されて不安定な組織を持つ金属を適切な温度に加熱・温度保持することで、組織の変態または析出を進行させて安定な組織に近づけ、所要の性質及び状態を与える熱処理[1][2]。焼き戻し、焼もどしとも表記する[3][4]

狭義には、焼入れされたを対象にしたものを指す[2]、鋼の焼戻しは、焼入れによりマルテンサイトを含み、硬いが脆化して、不安定な組織となった鋼に靱性を回復させて、組織も安定させる処理である[4]

アルミニウム合金のような非鉄金属マルエージング鋼のような特殊鋼などへの溶体化処理後に行われる焼戻し処理は時効処理の一種で[5]、人工時効あるいは焼戻し時効、高温時効と呼ばれる[6]

本記事では焼入れされた鋼の焼戻しについて主に説明する。人工時効については時効 (金属)を参照のこと。また、本記事では日本産業規格学術用語集に準じて、「焼戻し」の表記で統一する[1][7]
目的
硬さと靱性の調整
焼入れによって得られたマルテンサイト組織は、硬いが脆い状態となっている。この焼入れ組織に粘り強さを与えるのが焼戻しの目的の1つである[8]。基本的には焼戻し温度と呼ばれる焼戻し時に加熱・保持する温度を変更することで、硬さ靱性のバランスを決定する[9]。靱性を重視する場合は比較的高温で焼戻しする高温焼戻しが、硬さを重視する場合は比較的低温で焼戻しする低温焼戻しが適用される[10]
残留応力の除去
焼入れによって、加工品にはマルテンサイト変態熱膨張によって内部に応力が発生する[11]。この応力は焼入れ後にも残り、変形・割れの発生や、機械的性質の悪化を生じさせる[11]。このような応力を残留応力と呼ぶ。この残留応力を焼戻し処理によって除去あるいは軽減させることができる。加工品の大きさや加熱時間にもよるが、500℃程度の焼戻しで残留応力はほぼ除去でき、200℃程度の焼戻しで半減できる[11]
寸法と形状の安定化
焼入れ後の組織には、残留オーステナイトと呼ばれるマルテンサイト化しきれなかったオーステナイト組織が残っている[12]。残留オーステナイトは常温で放置すると時間が経つに連れて徐々にマルテンサイトに変態する[13]。残留オーステナイトからマルテンサイトへの変態の際、組織の体積が膨張するので変形や寸法変化を起こしたり、上記の残留応力とも相まって割れが発生する場合がある[13]。また、マルテンサイトも低炭素マルテンサイトへ時間が経つに連れて徐々に変化していき、その際に縮小を起こす[13]。焼戻しにより、このような不安定な組織を安定化させて、加工品の寸法変化や割れの発生防止をすることができる[14]
二次硬化の利用
焼戻しによる二次硬化現象を利用するもので合金鋼特有のものである。通常の焼戻しでは延性と硬さが反比例するが、二次硬化により延性と硬さが共に向上する[15]合金工具鋼高速度工具鋼に適用される[16][17]
再加熱による組織変化焼入れによって得られたマルテンサイト組織拡大写真

焼入れされた鋼は、金属組織的にも内部応力的にも不安定な状態にある[18]。焼入れで得られたマルテンサイト組織を再加熱していくと、マルテンサイトから過飽和に固溶されていた炭素や合金元素が吐き出され、安定な組織に近づいていき、機械的性質も変化していく[19]。これが焼戻しの基本原理である[19]。以下、焼入れ後の組織を再加熱していくと、組織にどのような変化が発生していくかを説明する。
第1段階

まず80 - 160℃まで加熱すると、マルテンサイトからε炭化物と呼ばれる炭化物析出し、マルテンサイトは低炭素マルテンサイトあるいは焼戻しマルテンサイトと呼ばれる組織に変わり、組織は低炭素マルテンサイトとε炭化物で構成されるようになる[20]。焼入れによる高炭素マルテンサイトはオーステナイトの炭素含有量をそのまま受け継いで炭素を0.8%含有しているのに対し[21]、低炭素マルテンサイトは0.2 - 0.3%程度の含有量である[22]結晶構造は、高炭素マルテンサイトは正方晶であるのに対し、低炭素マルテンサイトは立方晶を取る[20]。ε炭化物は六方晶の結晶構造を持ち、Fe2 - 2.5CあるいはFe2 - 3Cで表され、標準組織で析出するFe3Cのセメンタイトとは異なる[22][20]。また、このような変化により体積が縮小する[22]。この変化は高炭素マルテンサイトが存在する場合のみに発生するので、炭素含有量0.3%以下の低炭素鋼では発生しない[22]
第2段階

次に230 - 280℃まで加熱すると、組織中の残留オーステナイトが下部ベイナイトに変態する[20]。この変化で体積は膨張する[23]。この変化は残留オーステナイトが存在する場合のみに発生する[22]。生じたベイナイトはやがてフェライトと炭化物(ε炭化物とセメンタイト)に変化する[20][19]
第3段階

さらに300℃以上に加熱すると、ε炭化物は一端母相中に溶け込み[24]、χ炭化物と呼ばれる別の中間相炭化物の析出を経てセメンタイトを析出するようになる[22]。低炭素マルテンサイトは炭素をセメンタイトとして析出したことでフェライトに変態していく[22]。この過程では体積は縮小する[23]

セメンタイトは、初めはフェライト素地中に細かい粒状で分散しているが、さらに温度が上昇していくと、大きな粒子に凝縮していく[20]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:73 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef