点電荷
[Wikipedia|▼Menu]

標準模型

標準模型素粒子

背景
素粒子物理学
場の量子論
ゲージ理論
自発的対称性の破れ
ヒッグス機構

構成要素
電弱相互作用
量子色力学
CKM行列

制約
強いCP問題
階層性問題
ニュートリノ振動

理論家
スダルシャン · マーシャク · ファインマン · ゲルマン · 坂田 · グラショー · ツワイク · 南部 · ハン · カビボ · ワインバーグ · サラーム · 小林 · 益川 · トホーフト · フェルトマン · グロス · ポリツァー · ウィルチェック

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









点粒子(: point particle)は、物理学においてよく用いられる理想化された粒子である。理想粒子 (ideal particle[1]) または点様粒子 (point-like particle, pointlike—) とも言う。

それを定義付ける特徴は空間的広がり(英語版)を持たないことである。ゼロ次元であり空間を占有しない[2]
概要

点粒子は大きさを持たない粒子のことで、空間上のある一点だけに分布する粒子である。通常の物体やそれを構成する原子分子などは大きさを持ち、点状には分布していないが、ある尺度で点と見なせるような大きさしか持たないなら、それらは点粒子として扱うことができる。このとき、その物体の持つ内部構造などは点粒子の持つ内部自由度として解釈される。たとえばある質量分布を点粒子と見なすなら、その点粒子の質量は分布全体の質量の合計となり、質量の密度は無視される。

大きさを持つ物体を点粒子と見なし得る状況は例えば、物体の大きさに比べて充分長い距離から物体を観測する場合、その形状に関わらず物体は点粒子として振る舞う。この他にも、三次元空間で逆二乗の法則によって記述される相互作用をする球形物体は、その大きさにかかわらず球の外部では、それらの物質が中心に全て集中しているかのように振る舞う。球形物体が外部に作る重力場電磁場といったは、球の中心に位置する質量や電荷が等しい点粒子の場と同等であることが知られている[3][4]

重力などに関係する議論で、質点 (point mass) が用いられることがある。これは質量(マス)がゼロではないというだけの性質を持った点粒子である。同様に電磁気などに関係する議論で、点電荷 (point charge) が用いられることがある。これは電荷(チャージ)がゼロではないというだけの性質を持った点粒子である[5]。他にもそれが必要な場合には、質量と電荷だけを持った点、といったものが用いられることもある。

物体の大きさを決定づけるのは物体同士の相互作用であり、物体そのものは点粒子として記述しつつも、粒子間の相互作用を与えることで物体の大きさを表現することが可能である。

量子力学においては、加えて不確定性原理によって、位置の不確定性から点粒子の「大きさ」を評価できる。例えば、水素原子中の 1s 軌道の電子は、10-30 m3 程度の体積を持つ。ここでいう「大きさ」とは点粒子の存在確率分布を指し、通常の意味での粒子の大きさではない(点粒子の大きさはゼロである)。

素粒子が点粒子か否かについては議論がある所で、詳細は素粒子の記事を参考のこと。また、量子論的な粒子として、例えば電子を例に挙げると、古典電子半径の他、電子#大きさにあるように、議論の対象によっても扱い方が変わるため、「ある / なし」で単純に決めつけたり、径としてある1つの値を挙げたりできるようなものではない。
質点グリッド上にグラフ化された点粒子の例。灰色の質量は質点(黒い円)に単純化することができる。実際のは見ることができないので、小円またはドットとして質点を示すことが実用上用いられる。詳細は「質点」を参照

質点(しつてん、: point mass)または点質量(てんしつりょう)は、点様質量(てんようしつりょう、: pointlike mass)とも呼ばれ、質量のみを持った点である。
応用
物理学

質点は一般的に重力場の解析に用いられる。系の重力を解析するとき、質量の全単位を個別に計上することは不可能となる。系の中の物体がどれも重心の外周の境界線との重なりを持たないとき、その物体をゼロ次元の質点と見なすことが可能となる。
数学

統計学における質点は確率分布における不連続な断片である。そのような質点を計算するには積分が連続区間の確率分布上を確率変数の全定義域に渡って実行される。この積分結果は1に等しくなるように規格化すると、さらなる計算で質点を求めることができる。
点電荷点粒子のスカラーポテンシャルは左から右に動き、すぐに双極子磁石(英語版)を励起する。

点電荷 (point charge) は、電荷を持つ粒子を理想化したモデルであり、電荷をもつが大きさは無い点である。

静電気学の基本方程式クーロンの法則である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:24 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef