測度論
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2019年1月)
A が B の部分集合なら、A の測度は B と等しいかそれより小さい。また空集合の測度は 0 でなければならない。

測度論(そくどろん、: measure theory)は、数学実解析における一分野で、測度とそれに関連する概念(完全加法族可測関数積分等)を研究する。ここで測度(そくど、: measure)とは面積体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。よく知られているように積分面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる[1]

また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、確率論統計学においても測度論は重要である。たとえば「サイコロの目が偶数になる確率」は目が 1, ..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っているため、測度の概念で記述できる。
概説

与えられた集合上の測度は 2 段階のステップで定義される。まずその集合の部分集合で測度が定義可能なもの(可測集合という)はどれであるかを決め、次にそれらの部分集合に対し具体的に測度を定義する。測度の定義は形式的に与えられ、その要件は、空集合の測度が 0 であることと、n 個の互いに素な集合の測度の和がそれらの集合の和集合の測度と一致することだけである。前述した面積、体積、個数はいずれも測度であることが容易に確かめられる。

重要なことは上の定義で n が可算個であってもよいということである。このことが測度論をベースにした積分の定義(ルベーグ積分)を従来の定義(リーマン積分)よりも使い易くしており、前者では適切な条件のもと積分と可算和の順番を交換できることを保証できる(有界収束定理)が、後者の場合は同じ条件下であってもこの種の交換は有限和のときにしか保証されない。

この測度の概念で、測度が定義できない集合が存在することが知られている。例えば R 2 {\displaystyle \mathbb {R} ^{2}} 上の測度として面積を考えた場合、面積が定義できない集合が存在する。しかしながら面積を定義できない集合は通常の方法では作れない(そのような集合を作るには選択公理が必要である)ことが知られているため、面積が定義できない集合があるという事実は、 R 2 {\displaystyle \mathbb {R} ^{2}} 上で測度論を展開する上であまり障害にならない。ただし面積が定義できない集合が存在することを利用すると、非常に不可解な性質を導くことができることが知られている(バナッハ=タルスキーのパラドックス)。
歴史「ルベーグ積分」および「ルベーグ測度」も参照

歴史的に微分積分学で扱うことのできた素朴な意味での体積(一般には多次元の体積)は、リーマン積分を用いて表され、有限加法的であった。1902年アンリ・ルベーグは彼の学位論文『積分、長さ、体積』("Integrale, longueur, aire") において測度の概念を確立する。これにより新たに定義された"体積"は、完全加法的であることを積極的に要求したため、極限概念との親和性が高く、そのためリーマン積分(とジョルダン測度)による場合よりも多くの集合に体積の定義が可能となった。これが測度論の始まりである。
形式的定義

形式的に、集合 X の部分集合からなる完全加法族 A 上で定義される可算加法的測度 μ とは拡張された区間 [0, ∞] に値を持つ(つまり、無限大も許す非負値の)関数であって、次の性質を満たすもののことである:


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:18 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef