温度
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、一般的な温度について説明しています。より厳密に規定された温度については「熱力学温度」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "温度" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2019年10月)

物理学
ウィキポータル 物理学
執筆依頼加筆依頼
物理学
ウィキプロジェクト 物理学
カテゴリ 物理学

温度
temperature

温度計。外側が華氏、内側が摂氏。
量記号T、t、θ
次元Θ
種類スカラー
テンプレートを表示

温度(おんど、(: temperature)とは、温冷の度合いを表す指標である。
概要[ソースを編集]

二つの物体の温度の高低は@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}温度的な接触[疑問点ノート](thermal[1]contact)によりエネルギーが移動する方向によって定義される。すなわち温度とはエネルギーが自然に移動していく方向を示す指標であるといえる。標準的には、接触によりエネルギーが流出する側の温度が高く、エネルギーが流入する側の温度が低いように定められる。接触させてもエネルギーの移動が起こらない場合は二つの物体の温度が等しい。この状態を温度平衡(熱平衡)と呼ぶ。

マクスウエルは、気体の温度は分子の乱雑な並進運動エネルギ―の平均値のみによって決まる。ただし、液体または固体状態にある物体に対する同様な結果は現在のところ確立されるに至っていないと述べていた[2]。最近、五十嵐は液体や固体に対しても成り立つ温度の定義を提案している。それによると、分子間力が位置のみの関数であれば、多原子分子で相互作用が存在しても、分子の並進運動エネルギーの平均値を統計力学を用いて、厳密に求めることができて、その結果はマクスウエルの速度分布則と一致し、絶対温度と質量のみの関数となる[3][4]。この結果を簡潔に述べると次のようになる。「温度は、原子・分子の乱雑な並進運動エネルギーの平均値を示している。」と云うことができる。気体分子の並進運動の速度分布ついてのマクスウエルの速度分布則は気体ばかりでなく、液体や固体に対しても成立することが、原島鮮先生のテキスト[5]にも記されているが、数学的証明は附されていない。温度が分子の乱雑な並進運動の運動エネルギーの平均値によって決まり分、分子内の回転や振動運動は温度に依存して励起されるが、温度には寄与しないことを五十嵐は思考実験を用いて証明している[6][7]

統計力学によれば、温度は物質を構成する分子の乱雑な並進運動エネルギーの平均値として、五十嵐が導出した様に求めることができる。この様にして求めた温度は、熱力学温度と一致する。

熱力学温度零点(0ケルビン)は絶対零度と呼ばれ、分子の乱雑な並進運動が停止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子力学的不確定性があるため、絶対零度になっても分子の運動は止まることはない。しかし、このときの分子の運動は乱雑な並進運動ではない。このときの分子の運動は、量子力学的ゼロ点振動(ゼロ点運動)と呼ばれ、乱雑な運動ではないので、エントロピーには寄与しないので、絶対零度ではエントロピーはゼロであり、分子の乱雑な並進運動も停止しゼロとなる。温度は物質を構成する分子の乱雑な並進運動エネルギーの平均値だからである。

温度は、化学反応において強い影響力を持つ。また、生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の環境下でしか生存できない。化学生物学における観察実験では、基礎的な条件として温度を記録する必要があり、あるいは温度を調整することが実験を成立させる重要な条件となる。また、生物学や医学において組織や検体を冷蔵するのは、温度を下げることで化学変化の速度を抑える意味がある。
動力学理論からのアプローチ[ソースを編集]

動力学理論では、ケルビン温度は、温度(熱)平衡状態における、1 自由度当たりの運動エネルギーの平均値に関連づけられる。

エネルギー等配分の法則(equipartition theorem)によると、系の個々の自由度あたりの運動エネルギーは kBT/2 となる。ここで、 T は絶対温度、 kB はボルツマン定数である。3次元空間で、粒子の並進自由度は 3 なので、単原子気体粒子1個は、3kBT/2 なるエネルギーを持つ。

例えば気体状態の酸素分子 (O2) は、並進に加えて回転(2自由度)と振動(1自由度)を持つ。それぞれの1自由度あたりの運動エネルギーは、 kBT/2 であるが、振動のモードは、常温を含む低い温度領域では量子力学的に凍結されるので、分子一個当たりの全エネルギーは 5kBT/2 となる。また、高い温度領域では調和振動子と近似される振動のモードとなり、運動エネルギーおよびそれとほぼ等しいポテンシャルエネルギーが加わるので、分子一個当たりの全エネルギーは 7kBT/2 となる。並進、回転、振動などの各モードはこのような一定の制約のもとに等配分され、その(地下水位のような)統一尺度が温度と言えるが、ポテンシャルや周期性の観点から、最も制約の少ないのが気体の並進エネルギーである。

固体の温度エネルギーは、デバイ温度より高い温度領域では原子1個あたり、 6kBT/2 で近似される(デュロン=プティの法則)が、これも、原子の 1 個が3自由度の調和振動子を構成するからである。

エネルギー等配分の法則は、混合気体における異種気体粒子相互においても成り立つのみならず、こうしたことは結果であって、実は、この結果に近づける均等化作用が存在すると考えられる。この均等化作用が物体中の空間的不均一に対して働く結果は熱伝導と言えるが、同じ空間を占めていても、(例えば透明な)物質と輻射場とが、異なる温度を長時間保持するケースは考えられ、この場合は、それぞれの温度を分けて考えるべきである(輻射の温度は、そもそも常識的に定義できない場合もある)。

温度は統計的な実体なので、空間的、時間的に、やや広い計測範囲が必要であり、気体であれば、その粒子が複数回衝突する時間や空間が必要である。例えば気体の並進、回転、振動といった運動のモードは、このような時空の範囲では十分に(先に述べた制約のもとに)均等化すると考えられる。しかし、マクスウエルが指摘している様に分子の回転、振動といった運動のモードは温度に依存して励起されるが、温度には寄与しないことに留意する必要がある[2]。いわゆる「断熱自由膨張」などはあくまで例外的な過渡現象である。
温度の定義[ソースを編集]

歴史上様々な温度の定義があったが、現在の国際量体系における基本量に位置付けられる熱力学温度の定義は、温度(熱)平衡状態における系の内部エネルギーUを、体積を一定に保ってエントロピー Sで偏微分したものである。

(T=∂ U/∂ S)v。現時点で、非平衡状態での温度やエントロピーの定義は、本来の意味で定義できないこともあり、途上段階である。

温度は非常に計りにくい物理量の一つである。温度は統計値であるから、低密度な物体や非常に狭い範囲を対象に計測するなど、分子数が少ない場合には統計的に値が安定せず意味が無くなること、非常に大量の分子の運動状態を一個一個観測することは現在の技術では不可能であり代わりに間接計測を行っていることに起因している。

温度を計測する方法としては、計測対象となる物体から放射される電磁波を計測する方法や、長い時間をかけて計測プローブを計測対象となる物体に接触させ温度(熱)平衡状態にさせてから計る方法がある。どちらの方法も、何らかの計測上の問題を抱えている。しかし、近年の高速温度測定装置では、対象物の大きさ数十マイクロメートル、測定時間は数ミリ秒程度で測定可能となっており、物理現象を捉える一つの手段としての有効性が向上してきている。
温度と温度計の理学史[ソースを編集]

物体の寒暖の度合いを定量的に表そうという試みを初めて行ったのは異説はあるがガリレオ・ガリレイであると考えられている。ガリレイは空気の熱膨張の性質を利用して物体の温度を計測できる装置、すなわち温度計を作成した。ガリレイの作った温度計は気圧などの影響を受けてしまうために実際に温度を定量的に表すには及ばなかったが、このように物質の温度による性質の変化を利用して、寒暖の度合いを定量的に表そうという試みは以後も続けられた。初めて目盛付き温度計により数値によって温度を表現しようとしたのはオーレ・レーマーである。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:37 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef