歩留まり
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "歩留まり" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2012年6月)

歩留まりあるいは歩止まり(ぶどまり)とは、製造など生産全般において、「原料素材)の投入量から期待される生産量に対して、実際に得られた製品生産数(量)比率」のことである。また、歩留まり率(ぶどまりりつ)は、歩留まりの具体的比率を意味し、生産性効率性の優劣を量るひとつの目安となる。例えば、半導体製品では、生産した製品の全数量の中に占める、所定の性能を発揮する「良品」の比率を示す。歩留まりが高いほど原料の質が高く、かつ製造ラインとしては優秀と言える。

英語の yield rate (イールドレート)は、日本語の「歩留まり」および「歩留まり率」とおおよそ同義。
概要

例えば、製鉄の際に、同じ精錬方法を使って原材料の鉱石10から1を製造できる場合と、鉱石8から同量の鉄1が得られる場合、後者の鉱石の方が原材料として質が良い。また同じ鉱石100を使って鉄を10精錬できる方法と、11精錬できる方法があった場合、後者の精錬方法の方が優れている。これらは歩留まりが良いと言う。特にといった貴金属においては古くから歩留まりの良い製法が研究され、アマルガム法や灰吹法などが開発されている。またこの考えは食料生産(農業・食品加工)にも適用され、原料に対する可食部の比率を指し、その残りがいわゆる食品廃材である。

工業分野では、工業製品の製造数に対する良品(不良品の対義語)の比率を指している。1 - (不良率) = 歩留まり

となる。

歩留まりが低いと、その分余計に原料が必要となり、それが製造コストを圧迫する。このため生産・製造分野での歩留まり向上は、重要視される課題のひとつである。
歩留まりと技術

理想論からいえば、歩留まりは限りなく1に近いか、または100%の方がよいのだが、不良品をゼロとすることは、現在の技術では純粋な素材や製品を製造することができないことや、または製造ラインの作業面における人的ミスや機械トラブルを完全になくせないことから不可能である。

また、単純な工業製品では動作しないものを不良品とみなすことが一般的だが、所定のスペックを満たす場合には良品となり、それを満たさない場合には不良品とされるような良品と不良品の境界が曖昧な工業製品では、検査や品質の基準を下げることによって歩留まりを上げることは可能である。

たとえば液晶ディスプレイドット落ちなどの関係で、一定数以上または目立つ個所の不良表示画素子がある製品を不良品とするが、この基準を「どの程度まで容認するか」によって歩留まりは大きく変化し、仮に不良画素を一切認めなかった場合には、液晶パネルの歩留まりは一般的に十分の一程度に下がるとも言われる。液晶ディスプレイの一般への低価格普及品クラス(ローエンド)の製品と、高価格なハイエンド品とで価格の桁が違う傾向があるのは、後者に求められる品質が高いことから歩留まりが低下するためである。
半導体製品と歩留まり

工業製品の歩留まりが低いものの代表格には半導体製品がある。かつてトランジスタがまだクリーンルームもなく手作業で製造されていた時代には、季節やその日の天候湿度によっても歩留まりが大きく変化していた。これは空気中のなどが半導体表面の膜生成に影響したためである(後述)。

半導体に関する物性が解明され、次第に不良になる原因が特定されて対策が講じられるようになり、クリーンルームで厳密な製造管理を行うようになると、歩留まりも次第に向上していくが、それでも製造時の各種パラメータのばらつきや、微細な塵芥の混入など、製品を製造するにあたっての障害を完全に排除することはできず、歩留まりの問題では現在のCPUのような微細な回路をもつ集積回路のみならず常に製造技術的な改良が進められている。

CPUやハードディスクなどコンピュータ用の部品では、高い基準に合格したものをハイエンドモデルとして販売し、不合格となったものは基準を低くして(たとえば動作周波数を下げる、消費電力増を許容する、最大記録容量を減らすなど)、メインストリームモデルやエントリーモデルとして販売している。こうすることにより、単一の生産ラインからさまざまなグレードの製品を出荷でき、市場の需要を満たすことができる。歩留まりが向上すれば、さらに高い品質基準を設けることによって、新製品を開発せずとも“より高性能の新機種”を生み出すこともできる。最新CPUの動作周波数が一見向上していくように見えるのはそのためである。

この事実を逆に考えた場合、CPU・メモリ製品は額面より高い周波数で動作する可能性を秘めたまま出荷されていることになる。ここから、「ユーザー自身でCPU・メモリオーバークロックして動かしてしまおう」という発想が生まれる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:22 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef