正準変数
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "正準変数" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2013年5月)

正準変数(せいじゅんへんすう、: canonical variable)とは、ハミルトン形式解析力学において、物体の運動を記述する基本変数として用いられる一般化座標一般化運動量の組をいう[1][2][3]。しばしば一般化座標は文字 q 、一般化運動量は p で表される。正準(カノニカル、: canonical)という語は標準的、慣例的という意味を表す[4]ウィリアム・ローワン・ハミルトンによって導入された正準変数による形式に正準(: canonique)という語を充てたのは、カール・グスタフ・ヤコブ・ヤコビである[5][6]

ニュートン力学ラグランジュ力学においては、基本変数が一般化座標 q とその時間微分である一般化速度 ·q であったが、ハミルトン力学においては、一般化座標と一般化運動量が用いられる。ラグランジアンL=L(q,·q,t) は一般化座標、一般化速度、時間の関数である。ここで L にルジャンドル変換 H = p q ˙ − L {\displaystyle H=p{\dot {q}}-L}

を施すことで一般化座標、一般化運動量、時間を変数とする関数ハミルトニアンH=H(q,p,t)が得られ、正準方程式 q ˙ = ∂ H ∂ p {\displaystyle {\dot {q}}={\frac {\partial H}{\partial p}}} p ˙ = − ∂ H ∂ q {\displaystyle {\dot {p}}=-{\frac {\partial H}{\partial q}}}

が得られる。
概要

一般化座標q=(q1,.., qn)と正準共役な一般化運動量 p=(p1,.., pn)の組による2n個の変数(q, p)=(q1,.., qn, p1,.., pn)を系の状態を指定する独立な変数と見なしたときに、(q, p)を正準変数という[1][2][3]。このとき、一般化座標 q を正準座標、一般化運動量 p を正準運動量とも呼ぶ[2]。正準変数(q, p)を座標とする2n次元の空間を相空間という[1][2][3]。系の状態は相空間上の1点で指定される。ハミルトニアンをH=H(q,p,t)とするとき、物体の運動を記述する運動方程式は q ˙ i ( t ) = ∂ H ∂ p i {\displaystyle {\dot {q}}^{i}(t)={\frac {\partial H}{\partial p_{i}}}} p ˙ i ( t ) = − ∂ H ∂ q i {\displaystyle {\dot {p}}_{i}(t)=-{\frac {\partial H}{\partial q^{i}}}}

で与えられる。但し、ドット記号は時間微分を表す。この方程式をハミルトンの正準方程式という。この正準方程式で時間発展が定まる力学系を自由度nのハミルトン力学系、またはハミルトン系という。ハミルトン力学系での系の時間発展は相空間上の軌道(q(t), p(t))で与えられる。

2n個の変数 z=(z1,.., zn, zn+1,.., z2n)を ( z 1 , ⋯ , z n , z n + 1 , ⋯ , z 2 n ) := ( q 1 , ⋯ , q n , p 1 , ⋯ , p n ) {\displaystyle (z^{1},\cdots ,z^{n},z^{n+1},\cdots ,z^{2n}):=(q^{1},\cdots ,q^{n},p_{1},\cdots ,p_{n})}

で定義すると正準変数をまとめて、z=(q, p)で表記することができる。列ベクトルでの表記を z=(q1,.., qn, p1,.., pn)Tとすると、正準方程式は z ˙ ( t ) = Ω ∇ H ( z ( t ) ) {\displaystyle {\dot {\boldsymbol {z}}}(t)=\Omega \nabla H({\boldsymbol {z}}(t))}

となる。ここでは∇はラプラシアンである。Ω=(ωi,j)は Ω = ( 0 n I n − I n 0 n ) {\displaystyle \Omega ={\begin{pmatrix}0_{n}&I_{n}\\-I_{n}&0_{n}\end{pmatrix}}}

で定義される2n × 2n行列である。Ω内の0nはn 次の零行列、Inはn 次の単位行列である。
ポアソン括弧詳細は「ポアソン括弧」を参照

相空間上の関数f=f(q, p, t)、g=g(q, p, t)に対し { f , g } := ∑ i = 1 n ( ∂ f ∂ q i ∂ g ∂ p i − ∂ f ∂ p i ∂ g ∂ q i ) {\displaystyle \{f,g\}:=\sum _{i=1}^{n}{\Big (}{\frac {\partial f}{\partial q_{i}}}{\frac {\partial g}{\partial p_{i}}}-{\frac {\partial f}{\partial p_{i}}}{\frac {\partial g}{\partial q_{i}}}{\Big )}}

で定義される{f, g}をポアソン括弧という。正準方程式による時間発展(q(t), p(t))に対し、f=f(q(t), p(t), t)の時間変化は d d t f ( q ( t ) , p ( t ) , t ) = ∂ ∂ t f ( q ( t ) , p ( t ) , t ) + { f , H } {\displaystyle {\frac {d}{dt}}f(q(t),p(t),t)={\frac {\partial }{\partial t}}f(q(t),p(t),t)+\{f,H\}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:42 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef